RAYLEIGH-TAYLOR EIGENMODES OF A THIN-LAYER IN THE NONLINEAR REGIME

被引:21
|
作者
BASKO, MM
机构
[1] UNIV COLORADO, BOULDER, CO 80309 USA
[2] MOSCOW THEORET & EXPTL PHYS INST, MOSCOW 117259, RUSSIA
关键词
D O I
10.1063/1.870725
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the long-wavelength limit, many aspects of the Rayleigh-Taylor (RT) instability of accelerated fluid shells can be explored by using the thin sheet approximation. For two-dimensional (2-D) planar eigenmodes, analytic nonlinear solutions [E. Ott, Phys. Rev. Lett. 29, 1429 (1972)] are available. Comparing the simplest of them for the nonconstant acceleration, g is-proportional-to t-2, with Ott's solution for constant g, the applicability of nonlinear results obtained for constant g to situations with variable acceleration is analyzed. Nonlinear three-dimensional (3-D) effects are investigated by comparing the numerical solutions- for axisymmetric Bessel eigenmodes with Ott's solution for 2-D modes. It is shown that there is a qualitative difference between 2-D and 3-D bubbles in the way they rupture a RT unstable fluid shell: In contrast to the exponential thinning of 2-D bubbles, mass is fully eroded from the top of an axisymmetric 3-D bubble within a finite time of (1.1-1.2)gamma-1 after the onset of the free-fall stage; gamma is the RT growth rate.
引用
收藏
页码:1270 / 1278
页数:9
相关论文
共 50 条
  • [21] ANALYSIS OF RAYLEIGH-TAYLOR INSTABILITY IN AN ABLATION LAYER
    ORENS, JH
    LAYSON, S
    BORIS, JP
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1180 - 1180
  • [22] Design of a single-mode Rayleigh-Taylor instability experiment in the highly nonlinear regime
    Malamud, G.
    Elgin, L.
    Handy, T.
    Huntington, C.
    Drake, R. P.
    Shvarts, D.
    Shimony, A.
    Kuranz, C. C.
    HIGH ENERGY DENSITY PHYSICS, 2019, 32 : 18 - 30
  • [23] INFLUENCE OF NONLINEAR EFFECTS ON THE DEVELOPMENT OF RAYLEIGH-TAYLOR INSTABILITY OF F-LAYER
    KOLESNIKOV, AF
    KRIVORUTSKIJ, EN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1989, 32 (04): : 524 - 525
  • [24] HEURISTIC MODEL FOR NONLINEAR RAYLEIGH-TAYLOR INSTABILITY
    BAKER, L
    FREEMAN, JR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1189 - 1189
  • [25] Nonlinear Diffusion Model for Rayleigh-Taylor Mixing
    Boffetta, G.
    De Lillo, F.
    Musacchio, S.
    PHYSICAL REVIEW LETTERS, 2010, 104 (03)
  • [26] Rayleigh-Taylor instability in nonlinear Schrodinger flow
    Jia, Shu
    Haataja, Mikko
    Fleischer, Jason W.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [27] Nonlinear theory of the ablative Rayleigh-Taylor instability
    Sanz, J
    Betti, R
    Ramis, R
    Ramírez, J
    PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 : B367 - B380
  • [28] Nonlinear saturation of Rayleigh-Taylor instability in a finite-thickness fluid layer
    Guo, H. Y.
    Wang, L. F.
    Ye, W. H.
    Wu, J. F.
    Zhang, J.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2017, 24 (11)
  • [29] Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer
    Wang, L. F.
    Guo, H. Y.
    Wu, J. F.
    Ye, W. H.
    Liu, Jie
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2014, 21 (12)
  • [30] RAYLEIGH-TAYLOR INSTABILITY OF THIN VISCOUS LAYERS
    CRAIK, ADD
    PHYSICS OF FLUIDS, 1976, 19 (03) : 479 - 480