RAYLEIGH-TAYLOR EIGENMODES OF A THIN-LAYER IN THE NONLINEAR REGIME

被引:21
|
作者
BASKO, MM
机构
[1] UNIV COLORADO, BOULDER, CO 80309 USA
[2] MOSCOW THEORET & EXPTL PHYS INST, MOSCOW 117259, RUSSIA
关键词
D O I
10.1063/1.870725
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the long-wavelength limit, many aspects of the Rayleigh-Taylor (RT) instability of accelerated fluid shells can be explored by using the thin sheet approximation. For two-dimensional (2-D) planar eigenmodes, analytic nonlinear solutions [E. Ott, Phys. Rev. Lett. 29, 1429 (1972)] are available. Comparing the simplest of them for the nonconstant acceleration, g is-proportional-to t-2, with Ott's solution for constant g, the applicability of nonlinear results obtained for constant g to situations with variable acceleration is analyzed. Nonlinear three-dimensional (3-D) effects are investigated by comparing the numerical solutions- for axisymmetric Bessel eigenmodes with Ott's solution for 2-D modes. It is shown that there is a qualitative difference between 2-D and 3-D bubbles in the way they rupture a RT unstable fluid shell: In contrast to the exponential thinning of 2-D bubbles, mass is fully eroded from the top of an axisymmetric 3-D bubble within a finite time of (1.1-1.2)gamma-1 after the onset of the free-fall stage; gamma is the RT growth rate.
引用
收藏
页码:1270 / 1278
页数:9
相关论文
共 50 条
  • [1] NONLINEAR EVOLUTION OF RAYLEIGH-TAYLOR INSTABILITY OF A THIN-LAYER
    COFFEY, T
    BOOK, DL
    BORIS, JP
    OTT, E
    WINSOR, NK
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 990 - 990
  • [3] 3-DIMENSIONAL, NONLINEAR EVOLUTION OF THE RAYLEIGH-TAYLOR INSTABILITY OF A THIN-LAYER
    MANHEIMER, W
    COLOMBANT, D
    OTT, E
    PHYSICS OF FLUIDS, 1984, 27 (08) : 2164 - 2175
  • [4] 3-DIMENSIONAL, NONLINEAR EVOLUTION OF THE RAYLEIGH-TAYLOR INSTABILITY OF A THIN-LAYER
    COLOMBANT, D
    MANHEIMER, W
    OTT, E
    PHYSICAL REVIEW LETTERS, 1984, 53 (05) : 446 - 449
  • [5] Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability
    Zhao, K. G.
    Wang, L. F.
    Xue, C.
    Ye, W. H.
    Wu, J. F.
    Ding, Y. K.
    Zhang, W. Y.
    PHYSICS OF PLASMAS, 2018, 25 (03)
  • [6] 2-DIMENSIONAL PATTERNS IN RAYLEIGH-TAYLOR INSTABILITY OF A THIN-LAYER
    FERMIGIER, M
    LIMAT, L
    WESFREID, JE
    BOUDINET, P
    QUILLIET, C
    JOURNAL OF FLUID MECHANICS, 1992, 236 : 349 - 383
  • [7] Nonlinear study of Rayleigh-Taylor instability in thin films past a porous layer
    Rudraiah, N
    Wagner, C
    Evans, GS
    Friedrich, R
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1998, 29 (04): : 417 - 431
  • [8] Studies of Rayleigh-Taylor instability of a thin liquid layer
    Bakhrakh, SM
    Simonov, GP
    LASER AND PARTICLE BEAMS, 1997, 15 (01) : 93 - 99
  • [9] On nonlinear Rayleigh-Taylor instabilities
    Desjardins, B.
    Grenier, E.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) : 1007 - 1016
  • [10] On Nonlinear Rayleigh-Taylor Instabilities
    B.DESJARDINS
    E.GRENIER
    Acta Mathematica Sinica(English Series), 2006, 22 (04) : 1007 - 1016