QUANTUM PHASE SUPEROPERATOR AND ANTINORMAL ORDERING OF THE SUSSKIND-GLOGOWER PHASE OPERATORS

被引:7
|
作者
BAN, M
机构
[1] Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama
关键词
D O I
10.1016/0375-9601(95)00138-S
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The relations between the Susskind-Glogower phase operator and the quantum phase superoperator are discussed. It is shown that the quantum phase superoperators are closely related to the antinormal ordering of the Susskind-Glogower phase operators.
引用
收藏
页码:275 / 280
页数:6
相关论文
共 50 条
  • [21] GENERALIZED PHASE OPERATORS FOR QUANTUM HARMONIC OSCILLATOR
    ESWARAN, K
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1970, 70 (01): : 1 - +
  • [22] Quantum encryption in phase space with displacement operators
    Randy Kuang
    Adrian Chan
    EPJ Quantum Technology, 2023, 10
  • [23] Quantum encryption in phase space with displacement operators
    Kuang, Randy
    Chan, Adrian
    EPJ QUANTUM TECHNOLOGY, 2023, 10 (01)
  • [24] Displacement operators: the classical face of their quantum phase
    Vutha, Amar C.
    Bohr, Eliot A.
    Ransford, Anthony
    Campbell, Wesley C.
    Hamilton, Paul
    EUROPEAN JOURNAL OF PHYSICS, 2018, 39 (02)
  • [25] SOME PROPERTIES OF PHASE OPERATORS IN QUANTUM OPTICS
    DERYUGIN, IA
    VISHENSKII, AA
    KURASHOV, VN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1972, (12): : 44 - 48
  • [26] Quantum interference mechanism of the stripe-phase ordering
    Mukhin, SI
    STRIPES AND RELATED PHENOMENA, 2000, : 135 - 142
  • [27] Phase-ordering dynamics in itinerant quantum ferromagnets
    Belitz, D.
    Kirkpatrick, T. R.
    Saha, Ronojoy
    PHYSICAL REVIEW B, 2007, 75 (14):
  • [28] Stripe-phase ordering as a quantum interference phenomenon
    Mukhin, SI
    PHYSICAL REVIEW B, 2000, 62 (07) : 4332 - 4335
  • [29] QUANTUM PHASE ESTIMATION WITH ARBITRARY CONSTANT-PRECISION PHASE SHIFT OPERATORS
    Ahmadi, Hamed
    Chiang, Chen-Fu
    QUANTUM INFORMATION & COMPUTATION, 2012, 12 (9-10) : 864 - 875
  • [30] Weyl ordering expansion for optical field phase operator and inverse operators
    Li Xue-Chao
    Yang Yang
    Fan Hong-Yi
    ACTA PHYSICA SINICA, 2013, 62 (08)