STOCHASTIC FRONTIER MODELS - A BAYESIAN PERSPECTIVE

被引:215
|
作者
VANDENBROECK, J
KOOP, G
OSIEWALSKI, J
STEEL, MFJ
机构
[1] ACAD ECON KRAKOW,DEPT ECONOMETR,UL RAKOWICKA 27,PL-31510 KRAKOW,POLAND
[2] UNIV ANTWERP,ANTWERP,BELGIUM
[3] BOSTON UNIV,BOSTON,MA 02215
[4] TILBURG UNIV,5000 LE TILBURG,NETHERLANDS
[5] UNIV CARLOS III,MADRID,SPAIN
关键词
COMPOSED ERROR MODELS; EFFICIENCY; MODEL COMPARISON; MIXING OF MODELS; PRIOR ELICITATION;
D O I
10.1016/0304-4076(94)90087-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
A Bayesian approach to estimation, prediction, and model comparison in composed error production models is presented. A broad range of distributions on the inefficiency term define the contending models, which can either be treated separately or pooled. Posterior results are derived for the individual efficiencies as well as for the parameters, and the differences with the usual sampling-theory approach are highlighted. The required numerical integrations are handled by Monte Carlo methods with Importance Sampling, and an empirical example illustrates the procedures.
引用
收藏
页码:273 / 303
页数:31
相关论文
共 50 条
  • [41] Stochastic frontier models of prism vertices
    Kitamura, R.
    Yamamoto, T.
    Kishizawa, K.
    Pendyala, R.M.
    Transportation Research Record, 2000, (1718) : 18 - 26
  • [42] Stochastic frontier models with network selectivity
    Horrace, William C.
    Jung, Hyunseok
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2018, 50 (03) : 101 - 116
  • [43] Stochastic frontier models for public transport
    De Jong, G
    Cheung, F
    WORLD TRANSPORT RESEARCH, VOLS 1 TO 4: VOL 1: TRANSPORT MODES AND SYSTEMS; VOL 2: PLANNING, OPERATION, MANAGEMENT AND CONTROL; VOL 3: TRANSPORT MODELLING/ASSESSMENT; VOL 4: TRANSPORT POLICY, 1999, : 373 - 386
  • [44] Inference in dynamic stochastic frontier models
    Tsionas, Efthymios G.
    JOURNAL OF APPLIED ECONOMETRICS, 2006, 21 (05) : 669 - 676
  • [45] Multivariate distributional stochastic frontier models
    Schmidt, Rouven
    Kneib, Thomas
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 187
  • [46] Robust estimation in stochastic frontier models
    Song, Junmo
    Oh, Dong-hyun
    Kang, Jiwon
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 105 : 243 - 267
  • [47] Quantile stochastic frontier models with endogeneity
    Tsionas, Mike G.
    Assaf, A. George
    Andrikopoulos, Athanasios
    ECONOMICS LETTERS, 2020, 188
  • [48] Dynamic quantile stochastic frontier models
    Assaf, A. George
    Tsionas, Mike G.
    Kock, Florian
    INTERNATIONAL JOURNAL OF HOSPITALITY MANAGEMENT, 2020, 89
  • [49] Stochastic frontier models with threshold efficiency
    Sungwon Lee
    Young Hoon Lee
    Journal of Productivity Analysis, 2014, 42 : 45 - 54
  • [50] Stochastic frontier models with network selectivity
    William C. Horrace
    Hyunseok Jung
    Journal of Productivity Analysis, 2018, 50 : 101 - 116