FACTORIZATION OF HECKE POLYNOMIALS FOR THE SYMPLETIC GROUP OF GENUS-N

被引:5
|
作者
ANDRIANOV, AN
机构
来源
MATHEMATICS OF THE USSR-SBORNIK | 1977年 / 33卷 / 03期
关键词
D O I
10.1070/SM1977v033n03ABEH002428
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:343 / 373
页数:31
相关论文
共 50 条
  • [31] LINK POLYNOMIALS AND HAMILTONIAN CORRESPONDING TO BRAID GROUP-REPRESENTATIONS OF Z(N) MODEL
    ZHAO, HK
    GE, ML
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1992, 18 (03) : 379 - 384
  • [32] A study on a class of q-Euler polynomials under the symmetric group of degree n
    Araci, Serkan
    Duran, Ugur
    Acikgoz, Mehmet
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (08): : 5196 - 5201
  • [33] Some identities of degenerate q-Euler polynomials under the symmetry group of degree n
    Kim, Taekyun
    Dolgy, D. V.
    Jang, Lee-Chae
    Kwon, Hyuck-In
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4707 - 4712
  • [34] On Jacobian group and complexity of the generalized Petersen graph GP(n, k) through Chebyshev polynomials
    Kwon, Y. S.
    Mednykh, A. D.
    Mednykh, I. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 529 : 355 - 373
  • [35] ON q-GENOCCHI POLYNOMIALS WITH WEIGHTED alpha AND beta UNDER SYMMETRIC GROUP OF DEGREE n
    Duran, Ugur
    Acikgoz, Mehmet
    Araci, Serkan
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2016, 15 (07): : 205 - 214
  • [36] SOME IDENTITIES OF SYMMETRY FOR q-BERNOULLI POLYNOMIALS UNDER SYMMETRIC GROUP OF DEGREE n
    Kim, Dae San
    Kim, Taekyun
    ARS COMBINATORIA, 2016, 126 : 435 - 441
  • [37] Automatic calculation of the fundamental group of an oriented surface of genus n with k boundary surfaces
    Kücük, A
    Bayram, M
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 162 (01) : 1 - 6
  • [38] STRUCTURE OF PERMUTATION GROUP OF RESIDUAL CLASS RING MODULO-N PRESENTED BY MEANS OF DICKSON POLYNOMIALS
    LAUSCH, H
    MULLER, WB
    NOBAUER, W
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1973, 261 : 88 - 99
  • [39] On Jacobian group and complexity of the I-graph I(n, k, l) through Chebyshev polynomials
    Mednykh, Ilya A.
    ARS MATHEMATICA CONTEMPORANEA, 2018, 15 (02) : 467 - 485