AN OPTOELECTRONIC TECHNIQUE FOR ESTIMATING FRACTAL DIMENSIONS FROM DYNAMICAL POINCARE MAPS

被引:0
|
作者
NAMAJUNAS, A
TAMASEVICIUS, A
机构
关键词
SPECIAL-PURPOSE AND APPLICATION BASED SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A dedicated analogue computer for estimating the pointwise dimensions from dynamical Poincare maps has been elaborated. The technique employs time series of the Poincare points successively displayed on the screen of an oscilloscope. It provides a rapid way to estimate the pointwise dimension from a single variable directly in an experiment. The method has been verified by 2-dimensional Poincare map, simulated from the Duffing-Holmes differential equation. The measured value well agrees with computer calculation for numerical data. The technique has been applied to electronic systems, including periodic, quasiperiodic and chaotic oscillators.
引用
收藏
页码:289 / 293
页数:5
相关论文
共 50 条
  • [1] AN OPTICAL TECHNIQUE FOR MEASURING FRACTAL DIMENSIONS OF PLANAR POINCARE MAPS
    LEE, CK
    MOON, FC
    [J]. PHYSICS LETTERS A, 1986, 114 (05) : 222 - 226
  • [2] DYNAMICAL SYNTHESIS OF POINCARE MAPS
    Brown, Ray
    Chua, Leon O.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (05): : 1235 - 1267
  • [3] Estimating the level of dynamical noise in time series by using fractal dimensions
    Sase, Takumi
    Pena Ramirez, Jonatan
    Kitajo, Keiichi
    Aihara, Kazuyuki
    Hirata, Yoshito
    [J]. PHYSICS LETTERS A, 2016, 380 (11-12) : 1151 - 1163
  • [4] ESTIMATING FRACTAL DIMENSIONS
    TAYLOR, CC
    [J]. ACTA STEREOLOGICA, VOL 6, SUPP 3, PARTS 1-2, 1987, 6 : 851 - 851
  • [5] Estimating dynamical dimensions from noisy observations
    Moore, Jack Murdoch
    Small, Michael
    [J]. INFORMATION SCIENCES, 2018, 462 : 55 - 75
  • [6] Spectrum of dimensions for Poincare recurrences of Markov maps
    Fernandez, B
    Ugalde, E
    Urías, J
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (04) : 835 - 849
  • [7] Fractal dimensions for repellers of maps with holes
    Dysman, M
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2005, 120 (3-4) : 479 - 509
  • [8] Fractal Dimensions for Repellers of Maps with Holes
    Michelle Dysman
    [J]. Journal of Statistical Physics, 2005, 120 : 479 - 509
  • [9] Fractal dimensions of chaotic saddles of dynamical systems
    Hunt, BR
    Ott, E
    Yorke, JA
    [J]. PHYSICAL REVIEW E, 1996, 54 (05): : 4819 - 4823
  • [10] Output functions and fractal dimensions in dynamical systems
    de Moura, APS
    Grebogi, C
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (13) : 2778 - 2781