Spectrum of dimensions for Poincare recurrences of Markov maps

被引:0
|
作者
Fernandez, B
Ugalde, E
Urías, J
机构
[1] CNRS, Ctr Phys Theor, F-13288 Marseille 09, France
[2] UASLP, Inst Invest Comunicac Opt, San Luis Potosi, Mexico
关键词
Markov maps; Poincare recurrences; spectra of dimensions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The spectrum of dimensions for Poincare recurrences of Markov maps is obtained by constructing a sequence of approximating maps whose spectra are known to be solution of non-homogeneous Bowen equations. We prove that the spectrum of the Markov map also satisfies such an equation.
引用
收藏
页码:835 / 849
页数:15
相关论文
共 50 条
  • [1] Pointwise dimensions for Poincare recurrences associated with maps and special flows
    Afraimovich, V
    Chazottes, JR
    Saussol, B
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (02) : 263 - 280
  • [2] The spectrum of dimensions for Poincare recurrences for nonuniformly hyperbolic geometric constructions
    Afraimovich, V
    Ramírez, L
    Ugalde, E
    [J]. FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - ANALYSIS, NUMBER THEORY, AND DYNAMICAL SYSTEMS, PT 1, 2004, 72 : 417 - 433
  • [3] Spectra of dimensions for Poincare recurrences
    Afraimovich, V
    Schmeling, J
    Ugalde, E
    Urías, J
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (04) : 901 - 914
  • [4] Local dimensions for Poincare recurrences
    Afraimovich, V
    Chazottes, JR
    Saussol, B
    [J]. ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 6 : 64 - 74
  • [5] Spectra of dimensions for Poincare recurrences for special flows
    Afraimovich, V
    Chazottes, JR
    Ugalde, E
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2002, 6 (02): : 269 - 285
  • [6] Statistics of Poincare recurrences for maps with integrable and ergodic components
    Hu, H
    Rampioni, A
    Rossi, L
    Turchetti, G
    Vaienti, S
    [J]. CHAOS, 2004, 14 (01) : 160 - 171
  • [7] Statistics of Poincare recurrences for a class of smooth circle maps
    Buric, N
    Rampioni, A
    Turchetti, G
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (05) : 1829 - 1840
  • [8] Weak chaos and Poincare recurrences for area preserving maps
    Buric, N
    Rampioni, A
    Turchetti, G
    Vaienti, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (14): : L209 - L215
  • [9] POINCARE RECURRENCES
    FRISCH, HL
    [J]. PHYSICAL REVIEW, 1956, 104 (01): : 1 - 5
  • [10] Quantum Poincare recurrences
    Casati, G
    Maspero, G
    Shepelyansky, DL
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (03) : 524 - 527