CONTROL OF THE REDOX POTENTIAL IN C-TYPE CYTOCHROMES - IMPORTANCE OF THE ENTROPIC CONTRIBUTION

被引:82
|
作者
BERTRAND, P
MBARKI, O
ASSO, M
BLANCHARD, L
GUERLESQUIN, F
TEGONI, M
机构
[1] CNRS, UPR 9036, UNITE BIOENERGET & INGN PROT, MARSEILLE, FRANCE
[2] FAC MED NORD, CRISTALLISAT & CRISTALLOG MACROMOLEC BIOL LAB, CNRS, URA 1296, F-13916 MARSEILLE 20, FRANCE
关键词
D O I
10.1021/bi00035a012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The enthalpic and entropic components of the redox free energy variation of cytochrome c(553) from Desulfovibrio vulgaris Hildenborough and its mutant Y64V, flavocytochrome b(2) from Saccharomyces cerevisiae, and the different hemes of cytochromes c(3) from Desulfovibrio vulgaris Miyazaki and Desulfovibrio desulfuricans Norway have been determined in 0.1 M Tris-HCl pH 7.0 (7.6 for cytochromes C-3) at 25 degrees C by using nonisothermal potentiometric titrations. The set of available experimental data demonstrates that the entropic component plays an important role in the control of the redox potential in c-type and b-type cytochromes. The variation of the entropic component within the class of cytochromes characterized by a positive value of E degrees' is proposed to be mainly determined by the variation of the exposure of the heme propionates to the solvent. In the case of tetraheme cytochromes c(3), the thermodynamic characteristics vary largely among the hemes belonging to the same molecule, which reflects the environmental peculiarities of each heme and also the heme-heme redox interactions. This study substantiates the existence of compensatory effects between large and opposite contributions to E degrees' predicted by all the current theoretical models which are based on electrostatic free energy calculations.
引用
收藏
页码:11071 / 11079
页数:9
相关论文
共 50 条
  • [31] WHY DO C-TYPE CYTOCHROMES EXIST - REPRISE
    WOOD, PM
    BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1058 (01) : 5 - 7
  • [32] DETECTION OF C-TYPE CYTOCHROMES USING ENHANCED CHEMILUMINESCENCE
    VARGAS, C
    MCEWAN, AG
    DOWNIE, JA
    ANALYTICAL BIOCHEMISTRY, 1993, 209 (02) : 323 - 326
  • [33] Ecochemical requirements for the maturation of mitochondrial c-type cytochromes
    Hamel, Patrice
    Corvest, Vincent
    Giege, Philippe
    Bonnard, Geraldine
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2009, 1793 (01): : 125 - 138
  • [34] Roles of c-type cytochromes in respiration in Neisseria meningitidis
    Deeudom, Manu
    Koomey, Michael
    Moir, James W. B.
    MICROBIOLOGY-SGM, 2008, 154 : 2857 - 2864
  • [35] CONVERSION OF CYTOCHROME B(562) TO C-TYPE CYTOCHROMES
    BARKER, PD
    NEROU, EP
    FREUND, SMV
    FEARNLEY, IM
    BIOCHEMISTRY, 1995, 34 (46) : 15191 - 15203
  • [36] A systematic investigation of multiheme c-type cytochromes in prokaryotes
    Sharma, Shailesh
    Cavallaro, Gabriele
    Rosato, Antonio
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2010, 15 (04): : 559 - 571
  • [37] RESONANCE RAMAN-SPECTROSCOPY OF C-TYPE CYTOCHROMES
    DESBOIS, A
    BIOCHIMIE, 1994, 76 (07) : 693 - 707
  • [38] Vibrio natriegens as a superior host for the production of c-type cytochromes and difficult-to-express redox proteins
    Fuchs, Helena
    Ullrich, Sophie R.
    Hedrich, Sabrina
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [39] Redox-linked conformation change and electron transfer between monoheme c-type cytochromes and oxides
    Khare, Nidhi
    Lovelace, David M.
    Eggleston, Carrick M.
    Swenson, Michael
    Magnuson, Timothy S.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2006, 70 (17) : 4332 - 4342
  • [40] The in situ spectral methods for examining redox status of c-type cytochromes in metal-reducing/oxidizing bacteria
    Xiaobo Luo
    Yundang Wu
    Xiaomin Li
    Dandan Chen
    Ying Wang
    Fangbai Li
    Tongxu Liu
    ActaGeochimica, 2017, 36 (03) : 544 - 547