BOSONIZATION IN A TWO-DIMENSIONAL RIEMANN-CARTAN GEOMETRY

被引:2
|
作者
DENARDO, G
SPALLUCCI, E
机构
[1] IST NAZL FIS NUCL, TRIESTE, ITALY
[2] INT CTR THEORET PHYS, I-34100 TRIESTE, ITALY
关键词
D O I
10.1007/BF02721455
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:25 / 36
页数:12
相关论文
共 50 条
  • [21] ON THE MAXWELL EQUATIONS IN A RIEMANN-CARTAN SPACE
    DESABBATA, V
    GASPERINI, M
    PHYSICS LETTERS A, 1980, 77 (05) : 300 - 302
  • [22] GEOMETRIC OPTICS IN A RIEMANN-CARTAN SPACETIME
    DERITIS, R
    LAVORGNA, M
    STORNAIOLO, C
    PHYSICS LETTERS A, 1983, 98 (8-9) : 411 - 413
  • [23] Groups of automorphisms of Riemann-Cartan structures
    Pan’zhenskii V.I.
    Journal of Mathematical Sciences, 2015, 207 (4) : 538 - 543
  • [24] COSMIC STRINGS IN RIEMANN-CARTAN SPACETIMES
    BAKER, WM
    CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (05) : 717 - 730
  • [25] Braneworld remarks in Riemann-Cartan manifolds
    da Silva, J. M. Hoff
    da Rocha, R.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (05)
  • [26] Test membranes in Riemann-Cartan spacetimes
    Vasilic, Milovan
    Vojinovic, Marko
    PHYSICAL REVIEW D, 2010, 81 (02):
  • [27] Tidal heating in a Riemann-Cartan spacetime
    Hensh, Sudipta
    Liberati, Stefano
    Vitagliano, Vincenzo
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [28] Deviation equation in Riemann-Cartan spacetime
    Puetzfeld, Dirk
    Obukhov, Yuri N.
    PHYSICAL REVIEW D, 2018, 97 (10)
  • [29] NEW LOOK AT THE RIEMANN-CARTAN THEORY
    AURILIA, A
    SPALLUCCI, E
    PHYSICAL REVIEW D, 1990, 42 (02): : 464 - 468
  • [30] Dirac Particle in Riemann-Cartan Spacetimes
    Obukhov, Yu. N.
    Silenko, A. J.
    Teryaev, O. V.
    PHYSICS OF PARTICLES AND NUCLEI, 2018, 49 (01) : 9 - 10