Rates of convergence for normal approximation in incomplete coupon collection

被引:0
|
作者
Posfai, Anna [1 ,2 ]
机构
[1] Hungarian Acad Sci, Anal & Stochast Res Grp, Budapest, Hungary
[2] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2007年 / 73卷 / 1-2期
基金
匈牙利科学研究基金会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A collector samples with replacement a set of n >= 2 distinct coupons until he has, for the first time, all the coupons with only m(n) is an element of {0, 1,..., n - 1} missing. If m(n) -> infinity and (n - m(n))/root n -> infinity as n -> infinity, then the asymptotic distribution of the standardized random number of necessary draws is normal. With a Fourier-analytic method, we give a bound for the rates of convergence in these central limit theorems.
引用
收藏
页码:333 / 348
页数:16
相关论文
共 50 条