Rates of convergence for multivariate normal approximation with applications to dense graphs and doubly indexed permutation statistics

被引:9
|
作者
Fang, Xiao [1 ]
Roellin, Adrian [2 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Natl Univ Singapore, Dept Stat & Appl Probabl, Singapore 117546, Singapore
关键词
dense graph limits; multivariate normal approximation; non-smooth metrics; permutation statistics; random graphs; Stein's method; CENTRAL-LIMIT-THEOREM; STEINS METHOD; DEPENDENCE; SEQUENCES; CLT;
D O I
10.3150/14-BEJ639
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a new general theorem for multivariate normal approximation on convex sets. The theorem is formulated in terms of a multivariate extension of Stein couplings. We apply the results to a homogeneity test in dense random graphs and to prove multivariate asymptotic normality for certain doubly indexed permutation statistics.
引用
收藏
页码:2157 / 2189
页数:33
相关论文
共 20 条