AN INEQUALITY FOR TRIGONOMETRIC POLYNOMIALS

被引:0
|
作者
RAHMAN, QI
机构
来源
AMERICAN MATHEMATICAL MONTHLY | 1963年 / 70卷 / 01期
关键词
D O I
10.2307/2312787
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:56 / &
相关论文
共 50 条
  • [31] Bernstein–Szegő Inequality for the Weyl Derivative of Trigonometric Polynomials in L0
    A. O. Leont’eva
    Proceedings of the Steklov Institute of Mathematics, 2020, 308 : 127 - 134
  • [32] Nikol’skii-Stechkin inequality for trigonometric polynomials in L0
    É. A. Storozhenko
    Mathematical Notes, 2006, 80 : 403 - 409
  • [33] Markov-Bernstein-type inequality for trigonometric polynomials with respect to doubling weights on [-ω,ω]
    Erdélyi, T
    CONSTRUCTIVE APPROXIMATION, 2003, 19 (03) : 329 - 338
  • [34] Bernstein-Szego inequality for trigonometric polynomials in the space L0
    Leont'eva, A. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (04): : 129 - 135
  • [36] A TRIGONOMETRIC INEQUALITY
    BINMORE, KG
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1966, 41 (164P): : 693 - &
  • [37] A TRIGONOMETRIC INEQUALITY
    ASKEY, R
    FITCH, J
    SIAM REVIEW, 1969, 11 (01) : 82 - &
  • [38] A trigonometric inequality
    Seiffert, HJ
    FIBONACCI QUARTERLY, 2005, 43 (04): : 382 - 382
  • [39] A TRIGONOMETRIC INEQUALITY
    STEUTEL, FW
    SIAM REVIEW, 1968, 10 (02) : 226 - &
  • [40] TRIGONOMETRIC INEQUALITY
    BACH, G
    BLOOM, DM
    SMITH, J
    TRYTTEN, G
    ORTNER, GM
    MURTY, VN
    STARK, JM
    MILTECH, J
    CARSON, RC
    EHLERS, P
    ISAACSON, EL
    JAGER, T
    RUEHR, OG
    SHAFER, RE
    PAPENFUSS, MC
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (01): : 62 - 62