On the Cycles of Indefinite Quadratic Forms and Cycles of Ideals II

被引:0
|
作者
Tekcan, Ahmet [1 ]
机构
[1] Uludag Univ, Fac Sci, Dept Math, TR-16059 Gorukle, Bursa, Turkey
关键词
Quadratic forms; Cycles of forms; Ideals; Cycles of ideals;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P and Q be two positive integers such that P < Q and let D = P-2 + Q(2) be a positive non- square integer. In the first section, we give some preliminaries from binary quadratic forms and quadratic ideals. In the second section, we show that given an ideal I = [Q, P + root D], there exists an indefinite symmetric quadratic form F-I = (Q, 2P,-Q) of discriminant 4 D which corresponds to I. We prove that I is always reduced, and so is F-I. Further, we prove that the cycle of F-I can be obtained using the cycle of I.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 50 条
  • [41] QUADRATIC APPROXIMATIONS IN UNIT CYCLES
    KOPETZKY, HG
    SCHNITZER, FJ
    [J]. ARCHIV DER MATHEMATIK, 1986, 46 (02) : 144 - 147
  • [42] ON LIMIT CYCLES OF QUADRATIC SYSTEMS
    史松龄
    [J]. Science Bulletin, 1980, (08) : 711 - 711
  • [43] RATIONAL CYCLES OF QUADRATIC POLYNOMIALS
    Piipponen, Samuli
    Erkama, Timo
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 33 (02): : 113 - 132
  • [44] Limit cycles of quadratic systems
    Gaiko, Valery A.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (07) : 2150 - 2157
  • [45] SEPARATRIX CYCLES OF QUADRATIC SYSTEMS
    GAIKO, VA
    [J]. DOKLADY AKADEMII NAUK BELARUSI, 1993, 37 (03): : 18 - 21
  • [46] SEPARATRIX CYCLES OF QUADRATIC SYSTEMS
    ROMANOVSKI, VG
    [J]. VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1986, (03): : 115 - 116
  • [47] Quadratic forms and algebraic cycles [according to Rost, Voevodsky, Vishik, Karpenko...]
    Kahn, Bruno
    [J]. ASTERISQUE, 2006, (307) : 113 - 163
  • [48] Geometry of cycles in quadratic systems
    Shafer D.S.
    Zegeling A.
    [J]. Qualitative Theory of Dynamical Systems, 2002, 3 (1) : 251 - 274
  • [49] VANISHING IDEALS OVER ODD CYCLES
    Eduardo Uribe-Paczka, M.
    Sarmiento, Eliseo
    Renteria Marquez, Carlos
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (02): : 233 - 258
  • [50] GORENSTEIN AND Sr PATH IDEALS OF CYCLES
    Kiani, Dariush
    Madani, Sara Saeedi
    Terai, Naoki
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2015, 57 (01) : 7 - 15