CARLEMAN ESTIMATES FOR A SUBELLIPTIC OPERATOR AND UNIQUE CONTINUATION

被引:21
|
作者
GAROFALO, N [1 ]
SHEN, Z [1 ]
机构
[1] PURDUE UNIV,DEPT MATH,W LAFAYETTE,IN 47907
关键词
UNIQUE CONTINUATION; SUBELLIPTIC OPERATOR; CARLEMAN ESTIMATES;
D O I
10.5802/aif.1392
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a Carleman type inequality for the subelliptic operator L = DELTA(z) + Absolute value of x 2partial derivative(t)2 in R(n+1), n greater-than-or-equal-to 2, where z is-an-element-of R(n), t is-an-element-of R. As a consequence, we show that -L + V has the strong unique continuation property at points of the degeneracy manifold {(0, t) is-an-element-of R(n+1)\t is-an-element-of R} if the potential V is locally in certain L(p) spaces.
引用
收藏
页码:129 / 166
页数:38
相关论文
共 50 条