We establish a Carleman type inequality for the subelliptic operator L = DELTA(z) + Absolute value of x 2partial derivative(t)2 in R(n+1), n greater-than-or-equal-to 2, where z is-an-element-of R(n), t is-an-element-of R. As a consequence, we show that -L + V has the strong unique continuation property at points of the degeneracy manifold {(0, t) is-an-element-of R(n+1)\t is-an-element-of R} if the potential V is locally in certain L(p) spaces.
机构:Laboratoire de Physique Mathématique et Géométrie, U.F.R. de Mathématiques, Université Paris 7, Paris Cedex 05, F-75251, Tour 45-55, 5ème étage, case 7012, 2, Place Jussieu