SELF-ASSOCIATION AND HEBBIAN LEARNING IN LINEAR NEURAL NETWORKS

被引:6
|
作者
PALMIERI, F [1 ]
ZHU, J [1 ]
机构
[1] UNIV NAPLES FEDERICO II,DIPARTIMENTO INGN ELETTRON,I-80125 NAPLES,ITALY
来源
基金
美国国家科学基金会;
关键词
D O I
10.1109/72.410360
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study Hebbian learning in linear neural networks with emphasis on the self-association information principle. This criterion, in one-layer networks, leads to the space of the principal components and can be generalized to arbitrary architectures. The self-association paradigm appears to be very promising because it accounts for the fundamental features of Hebbian synaptic learning and generalizes the various techniques proposed for adaptive principal component networks, We also include a set of simulations that compare various neural architectures and algorithms.
引用
收藏
页码:1165 / 1184
页数:20
相关论文
共 50 条
  • [41] No need to forget, just keep the balance: Hebbian neural networks for statistical learning
    Tovar, Angel Eugenio
    Westermann, Gert
    COGNITION, 2023, 230
  • [42] The road to chaos by time-asymmetric Hebbian learning in recurrent neural networks
    Molter, Colin
    Salihoglu, Utku
    Bersini, Hugues
    NEURAL COMPUTATION, 2007, 19 (01) : 80 - 110
  • [43] Comparing the performance of Hebbian against backpropagation learning using convolutional neural networks
    Lagani, Gabriele
    Falchi, Fabrizio
    Gennaro, Claudio
    Amato, Giuseppe
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (08): : 6503 - 6519
  • [44] Adaptive Spiking Neural Networks with Hodgkin-Huxley Neurons and Hebbian Learning
    Long, Lyle N.
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 165 - 165
  • [45] Comparing the performance of Hebbian against backpropagation learning using convolutional neural networks
    Gabriele Lagani
    Fabrizio Falchi
    Claudio Gennaro
    Giuseppe Amato
    Neural Computing and Applications, 2022, 34 : 6503 - 6519
  • [46] Hebbian Learning in Spiking Neural Networks With Nanocrystalline Silicon TFTs and Memristive Synapses
    Cantley, Kurtis D.
    Subramaniam, Anand
    Stiegler, Harvey J.
    Chapman, Richard A.
    Vogel, Eric M.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2011, 10 (05) : 1066 - 1073
  • [47] LEARNING IN LINEAR NEURAL NETWORKS - A SURVEY
    BALDI, PF
    HORNIK, K
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (04): : 837 - 858
  • [48] Hebbian imprinting and retrieval in oscillatory neural networks
    Scarpetta, S
    Zhaoping, L
    Hertz, J
    NEURAL COMPUTATION, 2002, 14 (10) : 2371 - 2396
  • [49] Oscillatory Hebbian Rule (OHR): An adaption of the Hebbian rule to Oscillatory Neural Networks
    Shamsi, Jafar
    Jose Avedillo, Maria
    Linares-Barranco, Bernabe
    Serrano-Gotarredona, Teresa
    2020 XXXV CONFERENCE ON DESIGN OF CIRCUITS AND INTEGRATED SYSTEMS (DCIS), 2020,
  • [50] SPARSE CODING AND INFORMATION IN HEBBIAN NEURAL NETWORKS
    PEREZVICENTE, CJ
    EUROPHYSICS LETTERS, 1989, 10 (07): : 621 - 625