SYMMETRICAL CHAIN PARTITIONS OF OTRTHOCOMPLEMENTED POSETS

被引:1
|
作者
BRASS, P
机构
[1] Institut für Mathematik, Universität Greifswald
关键词
D O I
10.1007/BF00676234
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that any orthocomplemented poset P of finite width admits a chain partition of cardinality 2[2/3 width(P)] which is symmetrical with respect to the orthocomplement. This cardinality is the best possible.
引用
收藏
页码:1241 / 1245
页数:5
相关论文
共 50 条
  • [31] Nested chain partitions of Hamiltonian filters
    Horrocks, DGC
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 81 (02) : 176 - 189
  • [32] Markov chain lumpability on fuzzy partitions
    Gerontidis, Loannis I.
    Kontakos, Stavros P.
    2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 326 - 331
  • [33] SATURATED CHAIN PARTITIONS AND FIBONACCI NUMBERS
    CHEN, WYC
    AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (03): : 278 - 279
  • [34] On-line chain partitions of orders
    Felsner, S
    THEORETICAL COMPUTER SCIENCE, 1997, 175 (02) : 283 - 292
  • [35] Linear Discrepancy of Chain Products and Posets with Bounded Degree
    Choi, Jeong-Ok
    Milans, Kevin G.
    West, Douglas B.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2014, 31 (03): : 291 - 305
  • [36] Are Chain-Complete Posets Co-wellpowered?
    J. Jurka
    J. Rosický
    Order, 2022, 39 : 71 - 76
  • [37] Are Chain-Complete Posets Co-wellpowered?
    Jurka, J.
    Rosicky, J.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2022, 39 (01): : 71 - 76
  • [38] Linear Discrepancy of Chain Products and Posets with Bounded Degree
    Jeong-Ok Choi
    Kevin G. Milans
    Douglas B. West
    Order, 2014, 31 : 291 - 305
  • [39] Generalized deviations of posets with applications to chain conditions on modules
    Albu, T
    Teply, ML
    INTERNATIONAL SYMPOSIUM ON RING THEORY, 2001, : 1 - 22
  • [40] Symmetric Chain Decompositions of Products of Posets with Long Chains
    David, Stefan
    Spink, Hunter
    Tiba, Marius
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):