PROBLEM OF A QUANTUM PARTICLE IN A RANDOM POTENTIAL ON A LINE REVISITED

被引:2
|
作者
VOROV, OK [1 ]
VAGOV, AV [1 ]
机构
[1] AUSTRALIAN NATL UNIV, RES SCH PHYS SCI & ENGN, DEPT THEORET PHYS, CANBERRA, ACT 0200, AUSTRALIA
基金
澳大利亚研究理事会;
关键词
DISORDER; RANDOM POTENTIAL; SOLITONS; ISOSPECTRAL TRANSFORMATION; DENSITY OF STATES; LEVEL STATISTICS; RANDOM MATRIX THEORY;
D O I
10.1016/0375-9601(95)92832-O
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The density of states (DOS) and the level statistics for a particle moving in a Gaussian random potential on a line are derived exactly. The degrees of freedom of the potentials in the ensemble are split into the spectral variables and the parameters of isospectral deformations of the potential which are given by the flows of the Korteweg-de Vries (KdV) hierarchy. This allows one to evaluate the functional integral for the ensemble average and to analyze the physical content of possible modifications of the Gaussian ensemble. Contrary to the known results for the finite interval problem, the DOS shows the formation of an impurity band for E < 0, separated from the continuous spectrum.
引用
下载
收藏
页码:301 / 307
页数:7
相关论文
共 50 条
  • [31] Diffusion and creep of a particle in a random potential
    Gorokhov, DA
    Blatter, G
    PHYSICAL REVIEW B, 1998, 58 (01): : 213 - 217
  • [32] Trapping a particle of a quantum walk on the line
    Wojcik, Antoni
    Luczak, Tomasz
    Kurzynski, Pawel
    Grudka, Andrzej
    Gdala, Tomasz
    Bednarska-Bzdega, Malgorzata
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [33] An investigation of equilibration in small quantum systems: the example of a particle in a 1D random potential
    Luck, J. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (11)
  • [34] Quantum Random Walks with General Particle States
    Belton, Alexander C. R.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 328 (02) : 573 - 596
  • [35] Quantum Random Walks with General Particle States
    Alexander C. R. Belton
    Communications in Mathematical Physics, 2014, 328 : 573 - 596
  • [36] RANDOM-WALKS OF A QUANTUM PARTICLE ON A CIRCLE
    FJELDSO, N
    MIDTDAL, J
    RAVNDAL, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07): : 1633 - 1647
  • [37] Dynamics of Quantum Vorticity in a Random Potential
    Link, Bennett
    PHYSICAL REVIEW LETTERS, 2009, 102 (13)
  • [38] THE QUANTUM-MECHANICAL TUNNELLING TIME PROBLEM - REVISITED
    COLLINS, S
    LOWE, D
    BARKER, JR
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (36): : 6213 - 6232
  • [39] Quantum random walk on the line as a Markovian process
    Romanelli, A
    Schifino, ACS
    Siri, R
    Abal, G
    Auyuanet, A
    Donangelo, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 338 (3-4) : 395 - 405
  • [40] Selective Opening Security in the Quantum Random Oracle Model, Revisited
    Pan, Jiaxin
    Zeng, Runzhi
    PUBLIC-KEY CRYPTOGRAPHY, PT III, PKC 2024, 2024, 14603 : 92 - 122