Pregnant Long-Evans rats were maintained on three diets: a liquid diet in which ethanol accounted for 35-39% of the total calories, a similar diet with the isocaloric substitution of sucrose for ethanol, and a lab chow control diet. At gestation day 18, the fetuses were taken and cultures of septal and hippocampal neurons prepared. Neuronal survival and neurite outgrowth were compared in cultures from the three diet groups, using the following media supplements: ethanol (1.2, 1.8 or 2.4 g/dl), neurotrophic factors (nerve growth factor [NGF] with the septal cultures, basic fibroblast growth factor [bFGF] with the hippocampal cultures), or ethanol plus neurotrophic factors. Both the septal and hippocampal neurons responded to ethanol in a dose-dependent manner. The neurons from both populations from fetuses which had been exposed prenatally to ethanol, however, tolerated considerably higher ethanol concentrations before decreases in survival or outgrowth were seen. These ethanol-exposed neuronal populations were also less responsive to neurotrophic factors: in hippocampal cultures, process outgrowth was significantly enhanced by bFGF in control but not ethanol-derived cultures, and in septal and hippocampal cultures, the neurotrophic factors significantly ameliorated ethanol neurotoxicity in control cultures, but not in those from the ethanol-exposed fetuses. The possible relevance of these observations to the fetal alcohol syndrome is discussed.