UMBRAL CALCULUS, BINOMIAL ENUMERATION AND CHROMATIC POLYNOMIALS

被引:0
|
作者
RAY, N
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
下载
收藏
页码:191 / 213
页数:23
相关论文
共 50 条
  • [21] Binomial Inequalities for Chromatic, Flow, and Tension Polynomials
    Beck, Matthias
    Leon, Emerson
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (02) : 464 - 474
  • [22] Umbral calculus associated with Frobenius-type Eulerian polynomials
    T. Kim
    T. Mansour
    Russian Journal of Mathematical Physics, 2014, 21 : 484 - 493
  • [23] Degenerate poly-Bernoulli polynomials with umbral calculus viewpoint
    Kim, Dae San
    Kim, Taekyun
    Kwon, Hyuck In
    Mansour, Toufik
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [24] Identities Involving Laguerre Polynomials Derived from Umbral Calculus
    Kim, T.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2014, 21 (01) : 36 - 45
  • [25] A note on degenerate Euler polynomials arising from umbral calculus
    Lee, Sae Soon
    Park, Jin-Woo
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 32 (04): : 332 - 347
  • [26] Study of Degenerate Poly-Bernoulli Polynomials by λ-Umbral Calculus
    Jang, Lee-Chae
    San Kim, Dae
    Kim, Hanyoung
    Kim, Taekyun
    Lee, Hyunseok
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 129 (01): : 393 - 408
  • [27] Study of degenerate poly-bernoulli polynomials by λ-umbral calculus
    Jang, Lee-Chae
    Kim, Dae San
    Kim, Hanyoung
    Kim, Taekyun
    Lee, Hyunseok
    CMES - Computer Modeling in Engineering and Sciences, 2021, 129 (01): : 393 - 408
  • [28] Apostol-Euler polynomials arising from umbral calculus
    Kim, Taekyun
    Mansour, Toufik
    Rim, Seog-Hoon
    Lee, Sang-Hun
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [29] q-Bernoulli polynomials and q-umbral calculus
    Dae San Kim
    Tae Kyun Kim
    Science China Mathematics, 2014, 57 : 1867 - 1874
  • [30] Apostol-Euler polynomials arising from umbral calculus
    Taekyun Kim
    Toufik Mansour
    Seog-Hoon Rim
    Sang-Hun Lee
    Advances in Difference Equations, 2013