A SQUEEZE FLOW PHENOMENON AT THE CLOSING OF A BILEAFLET MECHANICAL HEART-VALVE PROSTHESIS

被引:59
|
作者
BLUESTEIN, D
EINAV, S
HWANG, NHC
机构
[1] UNIV MIAMI,DEPT BIOMED ENGN,CORAL GABLES,FL 33124
[2] TEL AVIV UNIV,DEPT FLUID MECH & HEAT TRANSFER,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1016/0021-9290(94)90046-9
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In vivo cavitation in cardiovascular flow fields may occur under very unusual circumstances as a localized transient phenomenon which are confined to very small legions in the vicinity of the valve body or leaflet surface. The violent collapse of cavitation bubbles induces local erosion that may lead to structural damage. The fluid mechanical factors that may cause in vivo cavitation inception in mechanical heart valve (MHV) prostheses are investigated. It is established that the closing velocity of the leaflet holds the key to MHV cavitation. During the final phase of valve closing, the fluid mass in the gap space between the closing occluder and the valve's body is squeezed into motion by the rapidly approaching boundaries. The flow pattern created by this motion (termed 'squeeze flow'), is found to be related to the valve geometry, and the impact velocity of the closing leaflet. Given the closing velocity of the leaflet and the geometry of the MHV, computational flow dynamics (CFD) are made to determine the velocity distributions in the gap flow field of a bileaflet MHV in the mitral position. A two dimensional, time dependent model of the gap space show that flow velocity in the gap space can reach values as high as 30 m s(-1) in regions near the edge of the inflow surface of the Edwards Duromedics (ED) MHV leaflet. This high speed stream ejected from the gap channel can create the conditions that characterize cavitation. The location of the isolated high speed region corresponds to the surface erosion that was observed in a number of damaged ED-MHV explants.
引用
收藏
页码:1369 / 1378
页数:10
相关论文
共 50 条
  • [11] 2-YEAR EXPERIENCE WITH THE NEW DUROMEDICS-BILEAFLET HEART-VALVE PROSTHESIS
    MORITZ, A
    KLEPETKO, W
    GRABENWOGER, F
    KLICPERA, M
    WOLNER, E
    ZEITSCHRIFT FUR KARDIOLOGIE, 1985, 74 : 99 - 99
  • [12] WEAR OF HEART-VALVE PROSTHESIS
    HASHIMOTO, S
    JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 1990, 35 (12) : 858 - 861
  • [13] CHITRA HEART-VALVE PROSTHESIS
    BHUVANESHWAR, GS
    VALIATHAN, MS
    RAMANI, AV
    LAL, GAV
    KUMAR, RS
    ARTIFICIAL ORGANS, 1987, 11 (04) : 326 - 326
  • [14] WHICH HEART-VALVE PROSTHESIS
    不详
    LANCET, 1985, 2 (8458): : 756 - 758
  • [15] SELECTION OF HEART-VALVE PROSTHESIS
    BORST, HG
    ZEITSCHRIFT FUR KARDIOLOGIE, 1985, 74 : 34 - 34
  • [16] CHITRA HEART-VALVE PROSTHESIS
    不详
    CURRENT SCIENCE, 1983, 52 (03): : 146 - 147
  • [17] HEART-VALVE REPLACEMENT WITH THE DUROMEDICS BILEAFLET VALVE IN 400 PATIENTS
    KLEPETKO, W
    MORITZ, A
    SCHLICK, W
    KRONIK, G
    JUNG, M
    SCHREINER, W
    WOLNER, E
    CIRCULATION, 1986, 74 (04) : 340 - 340
  • [18] Effect of the flow field of mechanical bileaflet mitral prostheses on valve closing
    Akutsu T.
    Imai R.
    Deguchi Y.
    Journal of Artificial Organs, 2005, 8 (3) : 161 - 170
  • [19] Structural analysis of a bileaflet mechanical heart valve prosthesis with curved leaflet
    Kwon, Young Joo
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2008, 22 (11) : 2038 - 2047
  • [20] Development of an animal experimental model for a bileaflet mechanical heart valve prosthesis
    Choo, SJ
    Kim, KI
    Park, NH
    Song, JM
    Choi, IC
    Shim, JY
    Lee, SK
    Kwon, YJ
    Kim, CN
    Lee, JW
    JOURNAL OF KOREAN MEDICAL SCIENCE, 2004, 19 (01) : 37 - 41