GENERALIZED LOG-NORMAL DISTRIBUTIONS WITH RELIABILITY APPLICATION

被引:14
|
作者
CHEN, GM [1 ]
机构
[1] UNIV WATERLOO,DEPT STAT & ACTUARIAL SCI,WATERLOO,ON N2L 3G1,CANADA
关键词
MAXIMUM LIKELIHOOD ESTIMATION; EMPIRICAL DISTRIBUTION FUNCTION (EDF); EDF TEST OF GOODNESS-OF-FIT;
D O I
10.1016/0167-9473(93)E0047-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A specific scale must be used to collect data in an experiment, but this scare may or may not be the appropriate scale to analyze the data thus collected. In this paper, we study a family of three-parameter distributions which includes the log-normal distribution as a special case, and one of the parameters plays the role of choosing a suitable scale for subsequent analysis. Some basic properties and maximum likelihood estimation of the unknown parameters are discussed, and an easy-to-use goodness-of-fit test is developed. A real data set, to which the usual Weibull, log-normal and gamma distributions cannot be fitted, is used to demonstrate the potential applicability of this family of distributions.
引用
收藏
页码:309 / 319
页数:11
相关论文
共 50 条
  • [21] Generalized log-normal chain-ladder
    Kuang, D.
    Nielsen, B.
    SCANDINAVIAN ACTUARIAL JOURNAL, 2020, 2020 (06) : 553 - 576
  • [22] Correlated random sampling for multivariate normal and log-normal distributions
    Zerovnik, Gasper
    Trkov, Andrej
    Kodeli, Ivan A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2012, 690 : 75 - 78
  • [23] Discriminating among Weibull, log-normal, and log-logistic distributions
    Raqab, Mohammad Z.
    Al-Awadhi, Shafiqah A.
    Kundu, Debasis
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (05) : 1397 - 1419
  • [24] GENERALIZED GRAM-CHARLIER SERIES WITH APPLICATION TO SUM OF LOG-NORMAL VARIATES
    SCHLEHER, DC
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1977, 23 (02) : 275 - 280
  • [25] LOG-NORMAL SIZE DISTRIBUTIONS OF ULTRAFINE METAL PARTICLES
    GRANQVIST, CG
    BUHRMAN, RA
    SOLID STATE COMMUNICATIONS, 1976, 18 (01) : 123 - 126
  • [26] Inferences on correlation coefficients of bivariate log-normal distributions
    Zhang, Guoyi
    Chen, Zhongxue
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (03) : 603 - 613
  • [27] Log-normal distributions across the sciences: Keys and clues
    Limpert, E
    Stahel, WA
    Abbt, M
    BIOSCIENCE, 2001, 51 (05) : 341 - 352
  • [28] The Log-Odd Normal Generalized Family of Distributions with Application
    Zubair, Muhammad
    Pogany, Tibor K.
    Cordeiro, Gauss M.
    Tahir, Muhammad H.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2019, 91 (02):
  • [29] LOG-NORMAL DISTRIBUTIONS OF OCCUPATIONAL EXPOSURE TO MEDICAL PERSONNEL
    SPECHT, RP
    BRODSKY, A
    HEALTH PHYSICS, 1976, 31 (02): : 160 - 163
  • [30] On log-normal distributions, timescales and basin analysis calculations
    Lerche, I
    COMPUTERS & GEOSCIENCES, 1998, 24 (01) : 105 - 108