The Ascaris larval respiratory chain, particularly complex II (succinate-ubiquinone oxidoreductase), was characterize in isolate mitochondria. Low-temperature difference spectra showed the presence of substrate-reducible cytochromes aa3 of CoMPleX IV, c + c1 and b of complex III (ubiquinol-cytochrome c oxidoreductase) in mitochondria from second-stage larvae (L2 mitochondria). Quinone analysis by high-performance liquid chromatography showed that, unlike adult mitochondria, which contain only rhodoquinone-9, L2 mitochondria contain ubiquinone-9 as a major component. Complex II in L2 mitochondria was kinetically different from that in adult mitochondria. The individual oxidoreductase activities comprising succinate oxidase, and fumarate reductase were determined in mitochondria from L2 larvae, from larvae cultured to later stages, and from adult nematodes. The L2 mitochondria exhibited the highest specific activity of cytochrome c oxidase, indicating that L2 larvae have the most aerobic respiratory chain among the stages studied. The Cyb(S) subunit of complex II in L2 and cultured-larvae mitochondria exhibited different reactivities against anti-adult Cyb(S) antibodies. Taken together, these results indicate that the complex II of larvae is different from its adult counterpart. In parallel with this change in mitochondrial biogenesis, biosynthetic conversion of quinones occurs during development in Ascaris nematodes.