ANOMALOUS RELAXATION IN THE FRACTAL TIME RANDOM-WALK MODEL

被引:30
|
作者
GOMI, S
YONEZAWA, F
机构
[1] Department of Physics, Keio University, Hiyoshi, Kohokuku
关键词
D O I
10.1103/PhysRevLett.74.4125
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study relaxation properties of the fractal time random walk model in which the waiting time distribution is given by the power law type t-1-a. By means of theoretical analyses as well as of Monte Carlo simulations of this model, we find that the relaxation becomes anomalous in the case of a<1 where the complex susceptibility is described by the Cole-Cole form. On the other hand, the normal Debye type relaxation is observed for a>1. We also find the scaling laws both for the relaxation function and for the particle density. © 1995 The American Physical Society.
引用
收藏
页码:4125 / 4128
页数:4
相关论文
共 50 条
  • [41] RANDOM-WALK MODEL OF OVUM TRANSPORT
    PORTNOW, J
    TALO, A
    HODGSON, BJ
    BULLETIN OF MATHEMATICAL BIOLOGY, 1977, 39 (03) : 349 - 357
  • [42] A RANDOM-WALK MODEL OF DIGIT COMPARISON
    POLTROCK, SE
    FOLTZ, GS
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1980, 16 (03) : 159 - 159
  • [43] A RANDOM-WALK MODEL OF DIGIT COMPARISON
    POLTROCK, SE
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1989, 33 (02) : 131 - 162
  • [44] A discrete time random walk model for anomalous diffusion
    Angstmann, C. N.
    Donnelly, I. C.
    Henry, B. I.
    Nichols, J. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 53 - 69
  • [45] REACTION-KINETICS ON FRACTAL STRUCTURES - RANDOM-WALK SIMULATIONS
    ANACKER, LW
    KOPELMAN, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1985, 189 (APR-): : 57 - PHYS
  • [46] RANDOM-WALK SIMULATION OF THE RESPONSE OF IRREGULAR OR FRACTAL INTERFACES AND MEMBRANES
    MEAKIN, P
    SAPOVAL, B
    PHYSICAL REVIEW A, 1991, 43 (06): : 2993 - 3004
  • [48] FLUCTUATIONS OF RANDOM-WALK OBSERVED FROM TIME TO TIME
    BARTOSZY, R
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1972, 21 (01): : 73 - 77
  • [49] Solvable random-walk model with memory and its relations with Markovian models of anomalous diffusion
    Boyer, D.
    Romo-Cruz, J. C. R.
    PHYSICAL REVIEW E, 2014, 90 (04)
  • [50] MAXIMAL INCREMENTS OF LOCAL TIME OF A RANDOM-WALK
    JAIN, NC
    PRUITT, WE
    ANNALS OF PROBABILITY, 1987, 15 (04): : 1461 - 1490