TUNING A SELF-CONSISTENT VISCOPLASTIC MODEL BY FINITE-ELEMENT RESULTS .1. MODELING

被引:128
|
作者
MOLINARI, A
TOTH, LS
机构
[1] Laboratoire de Physique et Mécanique des Matériaux, URA CNRS No. 1215, ISGMP-Université de Metz, 57045 Metz, Ile du Saulcy
来源
ACTA METALLURGICA ET MATERIALIA | 1994年 / 42卷 / 07期
关键词
D O I
10.1016/0956-7151(94)90324-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The self consistent model of Molinari et al. [Acta metall. 35, 2983 (1987)] is modified with the help of the finite element results of Gilormini and Germain [Int. J. Solids Struct. 23, 413 (1987)]. The modification implies the introduction of a new scalar parameter in the interaction law of the self consistent model. In this first part, the model is established and the new parameter is tuned so that the self consistent predictions and the results of the finite element predictions for a spherical inclusion in an infinite matrix nearly coincide. A simple relation between the new parameter and the value of the strain rate sensitivity has been found.
引用
收藏
页码:2453 / 2458
页数:6
相关论文
共 50 条
  • [21] MCrAlY creep behaviour modelling by means of finite-element unit cells and self-consistent constitutive equations
    Hermosilla, U.
    Karunaratne, M. S. A.
    Jones, I. A.
    Hyde, T. H.
    Thomson, R. C.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2009, 223 (L1) : 41 - 51
  • [22] Texture adjustment approach of magnesium alloys via variable strain path calculated by an integrated finite element-viscoplastic self-consistent model
    Wu, Wenjie
    Chen, Wenzhen
    Wang, Xiaoyu
    Wang, Wenke
    Zhang, Wencong
    Liu, Xinhua
    Kim, Hyoung Seop
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 184 : 15 - 31
  • [23] Modelling of texture development in cold rolled ferritic-austenitic stainless steel using self-consistent viscoplastic model and finite element method
    Kowalski, M.
    Jura, J.
    Baudin, Th
    ARCHIVES OF METALLURGY AND MATERIALS, 2008, 53 (01) : 175 - 178
  • [24] SELF-CONSISTENT DECONVOLUTION .1. THEORY
    BATES, RHT
    NAPIER, PJ
    MCKINNON, AE
    MCDONNELL, MJ
    OPTIK, 1976, 44 (02): : 183 - 201
  • [25] SELF-CONSISTENT POMERANCHUKON SINGULARITIES .1.
    BRONZAN, JB
    PHYSICAL REVIEW D, 1971, 4 (04): : 1097 - &
  • [26] Generalized self-consistent homogenization using the Finite Element Method
    Lefik, M.
    Boso, D. P.
    Schrefler, B. A.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (04): : 306 - 319
  • [27] A combined finite element and self-consistent model; Validation by neutron diffraction strain scanning
    Daymond, MR
    ICOTOM 14: TEXTURES OF MATERIALS, PTS 1AND 2, 2005, 495-497 : 1019 - 1024
  • [28] Modeling of Texture Development during Metal Forming Using Finite Element Visco-Plastic Self-Consistent Model
    Kronsteiner, Johannes
    Theil, Elias
    Ott, Alois Christian
    Arnoldt, Aurel Ramon
    Papenberg, Nikolaus Peter
    CRYSTALS, 2024, 14 (06)
  • [29] SELF-CONSISTENT WAVES AND THEIR STABILITY IN WARM PLASMA .1. CONSTRUCTION OF THE SELF-CONSISTENT WAVES
    LEE, MA
    LERCHE, I
    JOURNAL OF PLASMA PHYSICS, 1979, 21 (FEB) : 141 - 149
  • [30] THE FINITE DEFORMATION OF RATE-DEPENDENT POLYCRYSTALS .1. A SELF-CONSISTENT FRAMEWORK
    HARREN, SV
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1991, 39 (03) : 345 - 360