Discovering (frequent) constant conditional functional dependencies

被引:5
|
作者
Diallo, Thierno [1 ]
Novelli, Noeel [2 ]
Petit, Jean-Marc [1 ]
机构
[1] Univ Lyon, INSA Lyon, CNRS, LIRIS,UMR5205, Paris, France
[2] Univ Mediterranee, CNRS, LIF, UMR6166, Marseille, France
关键词
conditional functional dependencies; CFDs; data dependencies; data mining; databases theory;
D O I
10.1504/IJDMMM.2012.048104
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conditional functional dependencies (CFDs) have been recently introduced in the context of data cleaning. They can be seen as an unification of functional dependencies (FDs) and association rules (AR) since they allow to mix attributes and attribute/values in dependencies. In this paper, we introduce our first results on constant CFD inference. Not surprisingly, data mining techniques developed for functional dependencies and association rules can be reused for constant CFD mining. We focus on two types of techniques inherited from FD inference: the first one extends the notion of agree sets and the second one extends the notion of non-redundant sets, closure and quasi-closure. We have implemented the latter technique on which experiments have been carried out showing both the feasibility and the scalability of our proposition.
引用
收藏
页码:205 / 223
页数:19
相关论文
共 50 条
  • [21] Effective Pruning for the Discovery of Conditional Functional Dependencies
    Li, Jiuyong
    Liu, Jixue
    Toivonen, Hannu
    Yong, Jianming
    [J]. COMPUTER JOURNAL, 2013, 56 (03): : 378 - 392
  • [22] Conditional Functional Dependencies: An FCA Point of View
    Medina, Raoul
    Nourine, Lhouari
    [J]. FORMAL CONCEPTS ANALYSIS, PROCEEDINGS, 2010, 5986 : 161 - 176
  • [23] Discovering Quantitative Temporal Functional Dependencies on Clinical Data
    Combi, Carlo
    Mantovani, Matteo
    Sala, Pietro
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2017, : 248 - 257
  • [24] TANE:: An efficient algorithm for discovering functional and approximate dependencies
    Huhtala, Y
    Kärkkäinen, J
    Porkka, P
    Toivonen, H
    [J]. COMPUTER JOURNAL, 1999, 42 (02): : 100 - 111
  • [25] Optimized algorithm of discovering functional dependencies with degrees of satisfaction
    Wei, Qiang
    Chen, Guoqing
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2006, : 169 - +
  • [26] A Statistical Perspective on Discovering Functional Dependencies in Noisy Data
    Zhang, Yunjia
    Guo, Zhihan
    Rekatsinas, Theodoros
    [J]. SIGMOD'20: PROCEEDINGS OF THE 2020 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2020, : 861 - 876
  • [27] Discovering Approximate Functional Dependencies using Smoothed Mutual Information
    Pennerath, Frederic
    Mandros, Panagiotis
    Vreeken, Jilles
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1254 - 1264
  • [28] Discovering Functional Dependencies from Mixed-Type Data
    Mandros, Panagiotis
    Kaltenpoth, David
    Boley, Mario
    Vreeken, Jilles
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1404 - 1414
  • [29] Discovering fuzzy functional dependencies as semantic knowledge in large databases
    Wang, X
    Chen, GQ
    [J]. SHAPING BUSINESS STRATEGY IN A NETWORKED WORLD, VOLS 1 AND 2, PROCEEDINGS, 2004, : 1136 - 1139
  • [30] Mining frequent conjunctive queries using functional and inclusion dependencies
    Cheikh Tidiane Dieng
    Tao-Yuan Jen
    Dominique Laurent
    Nicolas Spyratos
    [J]. The VLDB Journal, 2013, 22 : 125 - 150