FAST AND SLOW RELAXATION PROCESSES POLYMER ELECTROLYTES

被引:34
|
作者
BERGMAN, R [1 ]
BRODIN, A [1 ]
ENGBERG, D [1 ]
LU, Q [1 ]
AGELL, CA [1 ]
TORELL, LM [1 ]
机构
[1] ARIZONA STATE UNIV,DEPT CHEM,TEMPE,AZ 85287
关键词
PHOTON CORRELATION SPECTROSCOPY; BRILLOUIN SPECTROSCOPY; RAMAN SPECTROSCOPY; POLYMER ELECTROLYTES; STRUCTURAL RELAXATION;
D O I
10.1016/0013-4686(95)00140-A
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We report a light scattering study of the complex dynamics of two salt-in-polymer electrolyte systems. One of these, NaCF3SO3 + PPG 4004 has been the subject of considerable previous study, while the second, Mg(Clo(4))(2) + PPG 4000, is little known and proves to be novel in its behavior. The measurements extend from Raman studies on the vibrational (ps) time scale, through Brillouin (10(-10)s) investigations, to photon correlation studies of the 1 mu s-1s range. In the Na triflate system, Raman spectra reveal extensive ion pairing which is not seen in the Mg(ClO4), system. The Brilloin and photon correlation results show that in each system the relaxation spectrum is complex. In the Na+ case, relaxation occurs by two distinct non-exponential processes. They can be related to the same processes responsible for the abnormal width of the glass transition in the Na+ system and imply the presence of microscopic segregation into salt-rich and salt-free polymer regions. In the Mg(CIO,), system, which is a rubbery solid at room temperature, three distinct processes are found. The fast process is identical in character, both in time scale and non-exponentiality, to the relaxation seen in pure propylene glycol. The slower processes are related to the rubbery character of the system. The faster of the two corresponds closely, in both time and non-exponentiality, with the shear relaxation responsible for the rubber-liquid transition, while the slower is exponential in character, and must relate to the motion of larger clusters. An interpretation is again given in terms of microscopic segregation, now with Mg2+-OH- chain endlinks to account for the rubbery behavior.
引用
收藏
页码:2049 / 2055
页数:7
相关论文
共 50 条
  • [21] Fast and slow processes in anomalous diffusion
    Bershadskii, A
    MODERN PHYSICS LETTERS B, 1999, 13 (20): : 717 - 722
  • [22] FAST AND SLOW PROCESSES OF ECONOMIC EVOLUTION
    ANDERSSON, AE
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1992, 395 : 62 - 74
  • [23] Slow relaxation and solvent effects in the collapse of a polymer
    Frisch, T
    Verga, A
    PHYSICAL REVIEW E, 2002, 66 (04): : 11
  • [24] SLOW RELAXATION MECHANISMS IN CONCENTRATED POLYMER SOLUTIONS
    FERRY, JD
    WILLIAMS, ML
    STERN, DM
    PHYSICAL REVIEW, 1954, 94 (05): : 1413 - 1413
  • [25] SLOW RELAXATION MECHANISMS IN CONCENTRATED POLYMER SOLUTIONS
    FERRY, JD
    WILLIAMS, ML
    STERN, DM
    JOURNAL OF PHYSICAL CHEMISTRY, 1954, 58 (11): : 987 - 992
  • [26] Fast processes in polymer synthesis
    Minsker, K.S.
    Berlin, Al.Al.
    Zakharov, V.P.
    Vysokomolekularnye Soedineniya. Ser.A Ser.B Ser.C - Kratkie Soobshcheniya, 2002, 44 (09): : 1606 - 1627
  • [27] Polymer Electrolytes: Ionic Transport Mechanisms and Relaxation Coupling
    Mark A. Ratner
    Patrik Johansson
    Duward F. Shriver
    MRS Bulletin, 2000, 25 (3) : 31 - 37
  • [28] Conductivity relaxation in the PEO-salt polymer electrolytes
    Choi, BK
    Kim, YW
    ELECTROCHIMICA ACTA, 2004, 49 (14) : 2307 - 2313
  • [29] Dielectric relaxation in PEO-based polymer electrolytes
    H. W. Kammer
    Ionics, 2018, 24 : 1415 - 1428
  • [30] Dielectric relaxation in PEO-based polymer electrolytes
    Kammer, H. W.
    IONICS, 2018, 24 (05) : 1415 - 1428