DIFFERENTIAL-EQUATIONS IN THE SPECTRAL PARAMETER, DARBOUX TRANSFORMATIONS AND A HIERARCHY OF MASTER SYMMETRIES FOR KDV

被引:51
|
作者
ZUBELLI, JP
MAGRI, F
机构
[1] UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
[2] UNIV CALIF BERKELEY,MATH SCI RES INST,BERKELEY,CA 94720
关键词
D O I
10.1007/BF02101509
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a certain family of Schrodinger operators whose eigenfunctions phi(x, lambda) satisfy a differential equation in the spectral parameter lambda of the form B(lambda, partial derivative-lambda)phi = THETA(x)phi. We show that the flows of a hierarchy of master symmetries for KdV are tangent to the manifolds that compose the strata of this class of bispectral potentials. This extends and complements a result of Duistermaat and Grunbaum concerning a similar property for the Adler and Moser potentials and the flows of the KdV hierarchy.
引用
收藏
页码:329 / 351
页数:23
相关论文
共 50 条