The diameter of total domination and independent domination vertex-critical graphs

被引:0
|
作者
Edwards, M. [1 ]
MacGillivray, G. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the diameter of a total domination vertex-critical graph is at most 5(gamma(t) - 1)/3, and that the diameter of an independent domination vertex- critical graph is at most 2(i- 1). For all values of gamma(t) equivalent to 2 (mod 3) there exists a total domination vertex- critical graph with the maximum possible diameter. For all values of i >= 2 there exists an independent domination vertex-critical graph with the maximum possible diameter.
引用
收藏
页码:33 / 39
页数:7
相关论文
共 50 条
  • [31] Vlatchings in 4-total restrained domination vertex critical graphs
    Rad, Nader Jafari
    Volkmann, Lutz
    ARS COMBINATORIA, 2016, 128 : 415 - 428
  • [32] Maximal and minimal vertex-critical graphs of diameter two
    Huang, J
    Yeo, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (02) : 311 - 325
  • [33] On Total Vertex Covers and Edge Domination in Graphs
    Klostermeyer, William F.
    Yeo, Anders
    UTILITAS MATHEMATICA, 2017, 105 : 13 - 30
  • [34] SPLIT DOMINATION VERTEX AND EDGE CRITICAL GRAPHS
    Girish, V. R.
    Usha, P.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2020, 26 (01) : 55 - 63
  • [35] Vertex and edge critical Roman domination in graphs
    Rad, Nader Jafari
    Hansberg, Adriana
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2013, 92 : 73 - 88
  • [36] CONNECTED MAJORITY DOMINATION VERTEX CRITICAL GRAPHS
    Manora, J. Joseline
    Vairavel, T. Muthukani
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 : 112 - 123
  • [37] Total domination in planar graphs of diameter two
    Henning, Michael A.
    McCoy, John
    DISCRETE MATHEMATICS, 2009, 309 (21) : 6181 - 6189
  • [38] Game total domination critical graphs
    Henning, Michael A.
    Klavzar, Sandi
    Rall, Douglas F.
    DISCRETE APPLIED MATHEMATICS, 2018, 250 : 28 - 37
  • [39] INDEPENDENT DOMINATION NUMBER OF GRAPHS THROUGH VERTEX SWITCHING
    Parveen, S. Thilsath
    Balamurugan, B. J.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (02): : 508 - 519
  • [40] Total domination edge critical graphs
    van der Merwe, LC
    Mynhardt, CM
    Haynes, TW
    UTILITAS MATHEMATICA, 1998, 54 : 229 - 240