FATIGUE AND CREEP-FATIGUE DAMAGE OF AUSTENITIC STAINLESS-STEELS UNDER MULTIAXIAL LOADING

被引:24
|
作者
WEISS, J [1 ]
PINEAU, A [1 ]
机构
[1] ECOLE MINES,CTR MAT,F-91003 EVRY,FRANCE
来源
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 1993年 / 24卷 / 10期
关键词
D O I
10.1007/BF02648599
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The objectives of the present study are to observe and model physical damage induced by cyclic multiaxial (tension-torsion) loading of 316L stainless steel both at room temperature and at elevated temperature (600-degrees-C). Four types of experiments were carried out on thin tubular specimens: (a) continuous pure fatigue (PF) tests; (b) PF sequential tests with different sequences of push-pull and torsional loading; (c) creep-fatigue (CF) tests with superimposed hold time at maximum tensile strain; and (d) sequential tests involving sequences of PF and CF loadings. Optical microscopy and scanning electron microscopy (SEM) were used to study quantitatively the damage, in particular, to determine the orientation of cracks and to measure the kinetics of crack nucleation and crack growth. It is shown that in pure fatigue at 600-degrees-C, the classical crack initiation stage I is bypassed due to a strong interaction between cyclic plasticity, oxidation, and cracking. Intense slip bands act as diffusional short circuits, leading to the formation of external (Fe2O3) and internal ((FeCr)3O4) oxide scales. The orientation of the microcracks during initiation and propagation stages, which is strongly affected by oxidation effects, explains qualitatively the significant deviations observed in the sequential tests from the Miner linear damage cumulative rule. It is also shown that creep-fatigue damage, which involves intergranular damage, is a complex process rather than a simple superposition of fatigue and creep damage. A stochastic model based on a Monte-Carlo simulation is developed. This model, which accounts very well for the situations in which crack initiation and crack propagation are coplanar, includes damage equations based on quantitative metallographical observations. Damage is modeled as the continuous nucleation of a population of growing cracks which eventually coalesce to lead to final fracture. It is shown that this simulation is able to reproduce with a good accuracy the fatigue lives measured under multiaxial continuous and sequential tests.
引用
收藏
页码:2247 / 2261
页数:15
相关论文
共 50 条
  • [31] Study on creep-fatigue life of irradiated austenitic stainless steel
    Ioka, I
    Miwa, Y
    Tsuji, H
    Yonekawa, M
    Takada, F
    Hoshiya, T
    JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL ENGINEERING, 2002, 45 (01) : 51 - 56
  • [32] Damage Evolution and Deformation of Rock Salt Under Creep-Fatigue Loading
    Zhao, Kai
    Ma, Hongling
    Yang, Chunhe
    Chen, Xiangsheng
    Liu, Yibiao
    Liang, Xiaopeng
    Cai, Rui
    ROCK MECHANICS AND ROCK ENGINEERING, 2021, 54 (04) : 1985 - 1997
  • [33] Damage Evolution and Deformation of Rock Salt Under Creep-Fatigue Loading
    Kai Zhao
    Hongling Ma
    Chunhe Yang
    Xiangsheng Chen
    Yibiao Liu
    Xiaopeng Liang
    Rui Cai
    Rock Mechanics and Rock Engineering, 2021, 54 : 1985 - 1997
  • [34] Creep-fatigue life estimation for austenitic stainless steel weldments
    Takahashi, Y
    Nakayama, Y
    Koto, H
    Taguchi, K
    Fukudo, Y
    Sato, S
    INTERNATIONAL CONFERENCE ON INTEGRITY OF HIGH-TEMPERATURE WELDS, 1998, : 221 - 230
  • [35] RELATIONSHIP OF CREEP, CREEP-FATIGUE, AND CAVITATION DAMAGE IN TYPE-304 AUSTENITIC STAINLESS-STEEL
    MAJUMDAR, S
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1989, 111 (02): : 123 - 131
  • [36] Assessment of damage and life prediction of austenitic stainless steel under high temperature creep-fatigue interaction condition
    Nam, SW
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 322 (1-2): : 64 - 72
  • [37] Creep-fatigue Damage and Life Prediction of Alloy Steels
    Ogata, Takashi
    CREEP & FRACTURE IN HIGH TEMPERATURE COMPONENTS: DESIGN & LIFE ASSESSMENT ISSUES, PROCEEDINGS, 2009, : 455 - 466
  • [38] Creep-fatigue damage and life prediction of alloy steels
    Ogata, Takashi
    MATERIALS AT HIGH TEMPERATURES, 2010, 27 (01) : 11 - 19
  • [39] LIFE PREDICTION OF 316 STAINLESS-STEEL UNDER CREEP-FATIGUE LOADING
    YAGI, K
    KANEMARU, O
    KUBO, K
    TANAKA, C
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1986, 9 (06) : 395 - 408
  • [40] FATIGUE CRACK-GROWTH IN METASTABLE AUSTENITIC STAINLESS-STEELS
    MEI, Z
    MORRIS, JW
    JOURNAL OF METALS, 1988, 40 (11): : 62 - 62