A MULTIDIMENSIONAL INTEGRATION BY PARTS FORMULA FOR THE HENSTOCK-KURZWEIL INTEGRAL

被引:0
|
作者
Lee, Tuo-Yeong [1 ]
机构
[1] Nanyang Technol Univ, Natl Inst Educ, Math & Math Educ, 1 Nanyang Walk, Singapore 637616, Singapore
来源
MATHEMATICA BOHEMICA | 2008年 / 133卷 / 01期
关键词
Henstock-Kurzweil integral; bounded variation in the sense of Hardy-Krause; integration by parts;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that if g is of bounded variation in the sense of Hardy-Krause on Pi(m)(i=1) [a(i), b(i)], then g chi (m)(Pi i=1) ((ai, bi)) is of bounded variation there. As a result, we obtain a simple proof of Kurzweil's multidimensional integration by parts formula.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 50 条
  • [22] Henstock-Kurzweil Vector Distributions
    Perez-Becerra, Tomas
    Sanchez-Perales, Salvador
    Escamilla-Reyna, Juan A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (06)
  • [23] Henstock-Kurzweil and McShane product integration;: Descriptive definitions
    Slavik, Antonin
    Schwabik, Stefan
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (01) : 241 - 269
  • [24] On Ito-Kurzweil-Henstock integral and integration-by-part formula
    Tin-Lam T.
    Tuan-Seng C.
    Czechoslovak Mathematical Journal, 2005, 55 (3) : 653 - 663
  • [25] Henstock-Kurzweil and McShane product integration; Descriptive definitions
    Antonín Slavík
    Štefan Schwabik
    Czechoslovak Mathematical Journal, 2008, 58 : 241 - 269
  • [26] On Ito-Kurzweil-Henstock integral and integration-by-part formula
    Toh, TL
    Chew, TS
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (03) : 653 - 663
  • [27] A HENSTOCK-KURZWEIL TYPE INTEGRAL ON ONE-DIMENSIONAL INTEGRAL CURRENTS
    Julia, Antoine
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2020, 148 (02): : 283 - 319
  • [28] L®-Henstock-Kurzweil Integral on Finite Dimensional Banach Spaces
    Kalita, Hemanta
    Becerra, Tomas Perez
    Bharali, Hemen
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (02) : 247 - 258
  • [29] A MEASURE-THEORETIC CHARACTERIZATION OF THE HENSTOCK-KURZWEIL INTEGRAL REVISITED
    Lee, Tuo-Yeong
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 1221 - 1231
  • [30] ON A GENERALIZATION OF HENSTOCK-KURZWEIL INTEGRALS
    Maly, Jan
    Kuncova, Kristyna
    MATHEMATICA BOHEMICA, 2019, 144 (04): : 393 - 422