THEORY OF LINEAR OPERATORS IN A J-SPACE . OPERATORS WHICH ARE REDUCED BY CANONICAL DECOMPOSITION

被引:0
|
作者
HESS, P
机构
关键词
D O I
10.1007/BF01110716
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:88 / &
相关论文
共 50 条
  • [21] Canonical Decomposition of Operators Associated with the Symmetrized Polydisc
    Pal, Sourav
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (04) : 931 - 943
  • [22] A covariant representation theory for linear operators in Cartan's space
    Cardoso, JG
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2004, 119 (11): : 1085 - 1103
  • [23] Canonical decomposition of irreducible linear differential operators with symplectic or orthogonal differential Galois groups
    Boukraa, S.
    Hassani, S.
    Maillard, J-M
    Weil, J-A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (10)
  • [24] FORMAL ADJOINTS AND A CANONICAL FORM FOR LINEAR OPERATORS
    Eastwood, Michael G.
    Gover, A. Rod
    CONFORMAL GEOMETRY AND DYNAMICS, 2006, 10 : 285 - 287
  • [25] Dispersion Operators Algebra and Linear Canonical Transformations
    Andriambololona, Raoelina
    Ranaivoson, Ravo Tokiniaina
    Emile, Randriamisy Hasimbola Damo
    Rakotoson, Hanitriarivo
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (04) : 1258 - 1273
  • [26] Dispersion Operators Algebra and Linear Canonical Transformations
    Raoelina Andriambololona
    Ravo Tokiniaina Ranaivoson
    Randriamisy Hasimbola Damo Emile
    Hanitriarivo Rakotoson
    International Journal of Theoretical Physics, 2017, 56 : 1258 - 1273
  • [27] On Linear Operators for Which TTD Is Normal
    Yousefi, Ramesh
    Dana, Mansour
    FILOMAT, 2019, 33 (09) : 2695 - 2704
  • [28] ON A CERTAIN DECOMPOSITION OF LINEAR-OPERATORS
    CRISTESCU, R
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1982, 27 (01): : 12 - 14
  • [29] DECOMPOSITION OF LINEAR HOMOGENEOUS DIFFERENTIAL OPERATORS
    SUCHOMEL, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1971, 21 (04) : 696 - &