AUGMENTED LAGRANGE MULTIPLIER FUNCTIONS AND DUALITY IN NONCONVEX PROGRAMMING

被引:371
|
作者
ROCKAFELLAR, RT [1 ]
机构
[1] UNIV WASHINGTON, DEPT MATH, SEATTLE, WA 98195 USA
来源
SIAM JOURNAL ON CONTROL | 1974年 / 12卷 / 02期
关键词
D O I
10.1137/0312021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:268 / 285
页数:18
相关论文
共 50 条
  • [41] Sequential Lagrange multiplier conditions for minimax programming problems
    Dhara, Anulekha
    Mehra, Aparna
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2008, 25 (02) : 113 - 133
  • [42] Augmented Lagrange-SQP methods with Lipschitz-continuous Lagrange multiplier updates
    Sachs, E
    Volkwein, S
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) : 233 - 253
  • [43] Optimality and duality for a class of nonconvex fractional programming problems
    Jia, J.H.
    Zhang, Q.J.
    [J]. Xi'an Jianzhu Keji Daxue Xuebao/Journal of Xi'an University of Architecture & Technology, 2001, 33 (02):
  • [44] The Augmented Lagrange Multiplier for robust visual tracking with sparse representation
    Shi, Ying
    Zhao, Yan
    Deng, Nianmao
    Yang, Kui
    [J]. OPTIK, 2015, 126 (9-10): : 937 - 941
  • [45] An extension of augmented Lagrange multiplier method for remote sensing inversion
    Yan, GJ
    Wang, JD
    Jiao, ZT
    Li, XW
    [J]. IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 2400 - 2402
  • [46] A modified augmented lagrange multiplier algorithm for toeplitz matrix completion
    Wang, Chuanlong
    Li, Chao
    Wang, Jin
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (05) : 1209 - 1224
  • [47] A modified augmented lagrange multiplier algorithm for toeplitz matrix completion
    Chuanlong Wang
    Chao Li
    Jin Wang
    [J]. Advances in Computational Mathematics, 2016, 42 : 1209 - 1224
  • [48] Stable Zero Lagrange Duality for DC Conic Programming
    Fang, D. H.
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [49] A geometric characterization of strong duality in nonconvex quadratic programming with linear and nonconvex quadratic constraints
    Fabián Flores-Bazán
    Gabriel Cárcamo
    [J]. Mathematical Programming, 2014, 145 : 263 - 290
  • [50] A geometric characterization of strong duality in nonconvex quadratic programming with linear and nonconvex quadratic constraints
    Flores-Bazan, Fabian
    Carcamo, Gabriel
    [J]. MATHEMATICAL PROGRAMMING, 2014, 145 (1-2) : 263 - 290