COMPUTING DIVISION POLYNOMIALS

被引:12
|
作者
MCKEE, J
机构
关键词
D O I
10.2307/2153297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recurrence relations for the coefficients of the nth division polynomial for elliptic curves are presented. These provide an algorithm for computing the general division polynomial without using polynomial multiplications; also a bound is given for the coefficients, and their general shape is revealed, with a means for computing the coefficients as explicit functions of n.
引用
收藏
页码:767 / 771
页数:5
相关论文
共 50 条
  • [21] DETERMINATION OF ZEROS OF POLYNOMIALS BY SYNTHETIC DIVISION
    LEE, CC
    NIU, HP
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1979, 7 (02) : 131 - 139
  • [22] Division Polynomials for Jacobi Quartic Curves
    Moody, Dustin
    ISSAC 2011: PROCEEDINGS OF THE 36TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2011, : 265 - 272
  • [23] ROOTS OF POLYNOMIALS OVER DIVISION RINGS
    Goutor, Alina G.
    Tikhonov, Sergey V.
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2024, 68 (05): : 359 - 364
  • [24] ALGORITHMS FOR MULTIPLICATION AND DIVISION OF 2 POLYNOMIALS
    GODBOLE, PB
    ADVANCES IN ENGINEERING SOFTWARE AND WORKSTATIONS, 1990, 12 (03): : 133 - 138
  • [25] Polynomials without roots in division algebras
    Allman, ES
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (12) : 3891 - 3919
  • [26] ON ZEROS OF POLYNOMIALS OVER DIVISION RINGS
    GORDON, B
    MOTZKIN, TS
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 116 (04) : 218 - &
  • [27] COMPUTING WITH EXPANSIONS IN GEGENBAUER POLYNOMIALS
    Keiner, Jens
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03): : 2151 - 2171
  • [28] Computing Sparse Multiples of Polynomials
    Mark Giesbrecht
    Daniel S. Roche
    Hrushikesh Tilak
    Algorithmica, 2012, 64 : 454 - 480
  • [29] Computing Hilbert class polynomials
    Belding, Juliana
    Broker, Reinier
    Enge, Andreas
    Lauter, Kristin
    ALGORITHMIC NUMBER THEORY, 2008, 5011 : 282 - +
  • [30] Computing Sparse Multiples of Polynomials
    Giesbrecht, Mark
    Roche, Daniel S.
    Tilak, Hrushikesh
    ALGORITHMS AND COMPUTATION, PT I, 2010, 6506 : 266 - 278