COMMUTATOR CONDITIONS AND SPLITTING AUTOMORPHISMS FOR STABLE GROUPS

被引:4
|
作者
WAGNER, FO [1 ]
机构
[1] UNIV FREIBURG,INST MATH LOG,W-7800 FREIBURG,GERMANY
关键词
D O I
10.1007/BF01375553
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a stable group G satisfying certain commutator conditions is nilpotent. Furthermore, a soluble stable group with generically splitting automorphism of prime order is nilpotent-by-finite. In particular, a soluble stable group with a generic element of prime order is nilpotent-by-finite.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [41] Automorphisms of groups
    Jin, Ping
    JOURNAL OF ALGEBRA, 2007, 312 (02) : 562 - 569
  • [42] Groups and automorphisms
    de Giovanni, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3B (02): : 273 - 286
  • [43] AUTOMORPHISMS OF GROUPS
    Romankov, VA
    ACTA APPLICANDAE MATHEMATICAE, 1992, 29 (03) : 241 - 280
  • [44] A stable splitting for spaces of commuting elements in unitary groups
    Adem, Alejandro
    Gomez, Jose Manuel
    Gritschacher, Simon
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (02):
  • [45] FROBENIUS GROUPS AS GROUPS OF AUTOMORPHISMS
    Makarenko, N. Yu.
    Shumyatsky, Pavel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (10) : 3425 - 3436
  • [46] GROUPS OF FINITE AUTOMORPHISMS OF GROUPS
    ZALESSKII, AE
    DOKLADY AKADEMII NAUK BELARUSI, 1975, 19 (08): : 681 - 684
  • [47] GROUPS OF AUTOMORPHISMS OF SOLUBLE GROUPS
    WEHRFRIT.BA
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1970, 20 : 101 - &
  • [48] On the commutator and the center of finite groups
    Herzog, M
    Kaplan, G
    Lev, A
    JOURNAL OF ALGEBRA, 2004, 278 (02) : 494 - 501
  • [49] COMMUTATOR SUBGROUPS OF FREE GROUPS
    AUSLANDER, M
    LYNDON, RC
    AMERICAN JOURNAL OF MATHEMATICS, 1955, 77 (04) : 929 - 931
  • [50] α-Commutator Subgroup of Finite Groups
    Ghezelsoflo, Maryam
    Moghaddam, Mohammad Reza R.
    Rostamyari, Mohammad Amin
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2022, 46 (01) : 15 - 21