COMPUTER-SIMULATION OF CHIRAL-SYMMETRY BREAKING IN (2+1)-DIMENSIONAL QED WITH N-FLAVORS

被引:141
|
作者
DAGOTTO, E
KOGUT, JB
KOCIC, A
机构
[1] UNIV ILLINOIS, DEPT PHYS, LOOMIS LAB, URBANA, IL 61801 USA
[2] UNIV ARIZONA, DEPT PHYS, TUCSON, AZ 85721 USA
关键词
D O I
10.1103/PhysRevLett.62.1083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1083 / 1086
页数:4
相关论文
共 50 条
  • [41] SYMMETRY REDUCTIONS OF A NONISOSPECTRAL LAX PAIR FOR A (2+1)-DIMENSIONAL BREAKING SOLITON SYSTEM
    Lv, Na
    Niu, Datian
    Yuan, Xuegang
    Qiu, Xudong
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2016, 78 (01) : 57 - 67
  • [42] Some Wave Simulation Properties of the (2+1) Dimensional Breaking Soliton Equation
    Aksan, Emine Nesligul
    Bulut, Hason
    Kayhan, Mirac
    [J]. 2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES2017), 2017, 13
  • [43] Spontaneous scale symmetry breaking in 2+1-dimensional QED at both zero and finite temperature
    Carrington, ME
    Chen, WF
    Kobes, R
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2001, 18 (04): : 757 - 763
  • [44] Spontaneous scale symmetry breaking in 2+1-dimensional QED at both zero and finite temperature
    M.E. Carrington
    W.F. Chen
    R. Kobes
    [J]. The European Physical Journal C - Particles and Fields, 2001, 18 : 757 - 763
  • [45] Chiral symmetry breaking and restoration in 2+1 dimensions from holography: Magnetic and inverse magnetic catalysis
    Rodrigues, Diego M.
    Li, Danning
    Capossoli, Eduardo Folco
    Boschi-Filho, Henrique
    [J]. PHYSICAL REVIEW D, 2018, 98 (10)
  • [47] Finite density effects on chiral symmetry breaking in a magnetic field in 2+1 dimensions from holography
    Rodrigues, Diego M.
    Li, Danning
    Capossoli, Eduardo Folco
    Boschi-Filho, Henrique
    [J]. PHYSICAL REVIEW D, 2021, 103 (06)
  • [48] The (2+1)-dimensional Gross-Neveu model with a U (1) chiral symmetry at nonzero temperature
    Hand, SJ
    Kogut, JB
    Strouthos, CG
    [J]. PHYSICS LETTERS B, 2001, 515 (3-4) : 407 - 413
  • [49] Symmetry reduction and new non-traveling wave solutions of (2+1)-dimensional breaking soliton equation
    Xian Da-Quan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (08) : 2061 - 2065
  • [50] Wronskian form of N-soliton solution for the (2+1)-dimensional breaking soliton equation
    Su Ting
    Geng Xian-Guo
    Ma Yun-Ling
    [J]. CHINESE PHYSICS LETTERS, 2007, 24 (02) : 305 - 307