THE BEST EUCLIDEAN FIT TO A GIVEN DISTANCE MATRIX IN PRESCRIBED DIMENSIONS

被引:19
|
作者
MATHAR, R
机构
关键词
D O I
10.1016/0024-3795(85)90181-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [21] The euclidean distance degree of orthogonally invariant matrix varieties
    Dmitriy Drusvyatskiy
    Hon-Leung Lee
    Giorgio Ottaviani
    Rekha R. Thomas
    Israel Journal of Mathematics, 2017, 221 : 291 - 316
  • [22] Studying asymmetry with Euclidean Distance Matrix Analysis (EDMA).
    Richtsmeier, J
    Cole, TM
    Lindsay, E
    Kreger, CD
    Deleon, V
    Aldridge, K
    Lele, S
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2002, : 131 - 131
  • [23] Generating Conformational Transitions Using the Euclidean Distance Matrix
    Li, Xiao-Bo
    Burkowski, Forbes
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2015, 14 (02) : 203 - 209
  • [24] A Euclidean distance matrix model for protein molecular conformation
    Fengzhen Zhai
    Qingna Li
    Journal of Global Optimization, 2020, 76 : 709 - 728
  • [25] On the distance from a matrix polynomial to matrix polynomials with some prescribed eigenvalues
    Kokabifar, E.
    Psarrakos, P. J.
    Loghmani, G. B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 : 158 - 185
  • [26] The distance from a matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue
    Papathanasiou, Nikolaos
    Psarrakos, Panayiotis
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (07) : 1453 - 1477
  • [27] Distance bounds for prescribed multiple eigenvalues of matrix polynomials
    Psarrakos, Panayiotis J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (11) : 4107 - 4119
  • [28] Some Properties for the Euclidean Distance Matrix and Positive Semidefinite Matrix Completion Problems
    Hong-Xuan Huang
    Zhi-An Liang
    Panos M. Pardalos
    Journal of Global Optimization, 2003, 25 : 3 - 21
  • [29] The Euclidean k-distance transformation in arbitrary dimensions: A separable implementation
    Cuisenaire, O
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 2409 - 2412
  • [30] Efficient Euclidean distance transform algorithm of binary images in arbitrary dimensions
    Wang, Jun
    Tan, Ying
    PATTERN RECOGNITION, 2013, 46 (01) : 230 - 242