A SIMPLE PROOF OF THE PLANAR RECTILINEAR STEINER RATIO

被引:2
|
作者
SALOWE, JS
机构
[1] Department of Computer Science, University of Virginia, Charlottesville, VA 22903, Thornton Hall
基金
美国国家科学基金会;
关键词
NETWORK THEORY; DISTANCE ALGORITHMS; HEURISTICS; TREE ALGORITHMS;
D O I
10.1016/0167-6377(92)90053-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The rectilinear Steiner ratio is the worst-case ratio of the length of a rectilinear minimum spanning tree to the length of a rectilinear Steiner minimal tree. Hwang proved that the ratio for point sets in the plane is 3/2. We provide a simple proof of the 3/2-bound.
引用
收藏
页码:271 / 274
页数:4
相关论文
共 50 条
  • [41] Steiner Minimal Trees in Rectilinear and Octilinear Planes
    Song Pu Shang
    Tong Jing
    Acta Mathematica Sinica, English Series, 2007, 23 : 1577 - 1586
  • [42] An evolution algorithm for the rectilinear Steiner tree problem
    Yang, B
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 241 - 249
  • [43] A practical algorithm for the minimum rectilinear steiner tree
    Jun Ma
    Bo Yang
    Shaohan Ma
    Journal of Computer Science and Technology, 2000, 15 : 96 - 99
  • [44] A practical algorithm for the minimum rectilinear Steiner tree
    Ma, J
    Yang, B
    Ma, SH
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2000, 15 (01) : 96 - 99
  • [45] Parametric study of the mode coupling instability for a simple system with planar or rectilinear friction
    Charroyer, L.
    Chiello, O.
    Sinou, J-J.
    JOURNAL OF SOUND AND VIBRATION, 2016, 384 : 94 - 112
  • [46] COMMENTS ON BERN PROBABILISTIC RESULTS ON RECTILINEAR STEINER TREES
    HWANG, FK
    YAO, YC
    ALGORITHMICA, 1990, 5 (04) : 591 - 598
  • [47] Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems
    Fomin, Fedor, V
    Lokshtanov, Daniel
    Kolay, Sudeshna
    Panolan, Fahad
    Saurabh, Saket
    ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (02)
  • [48] A scalable and accurate rectilinear Steiner minimal tree algorithm
    Wong, Yiu-Chung
    Chu, Chris
    2008 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), PROCEEDINGS OF TECHNICAL PROGRAM, 2008, : 29 - +
  • [49] Faster approximation algorithms for the rectilinear Steiner tree problem
    Fossmeier, U
    Kaufmann, M
    Zelikovsky, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 1997, 18 (01) : 93 - 109
  • [50] AN OPTIMAL ALGORITHM FOR RECTILINEAR STEINER TREES FOR CHANNELS WITH OBSTACLES
    CHIANG, C
    SARRAFZADEH, M
    WONG, CK
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1991, 19 (06) : 551 - 563