A SIMPLE PROOF OF THE PLANAR RECTILINEAR STEINER RATIO

被引:2
|
作者
SALOWE, JS
机构
[1] Department of Computer Science, University of Virginia, Charlottesville, VA 22903, Thornton Hall
基金
美国国家科学基金会;
关键词
NETWORK THEORY; DISTANCE ALGORITHMS; HEURISTICS; TREE ALGORITHMS;
D O I
10.1016/0167-6377(92)90053-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The rectilinear Steiner ratio is the worst-case ratio of the length of a rectilinear minimum spanning tree to the length of a rectilinear Steiner minimal tree. Hwang proved that the ratio for point sets in the plane is 3/2. We provide a simple proof of the 3/2-bound.
引用
收藏
页码:271 / 274
页数:4
相关论文
共 50 条
  • [1] A SIMPLE PROOF OF THE STEINER RATIO CONJECTURE FOR 5 POINTS
    FRIEDEL, J
    WIDMAYER, P
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (03) : 960 - 967
  • [2] The k-Steiner ratio in the rectilinear plane
    Borchers, A
    Du, DZ
    Gao, B
    Wan, PJ
    JOURNAL OF ALGORITHMS, 1998, 29 (01) : 1 - 17
  • [3] The k-Steiner Ratio in the Rectilinear Plane
    Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, United States
    不详
    不详
    不详
    J Algorithms, 1 (1-17):
  • [4] A SIMPLE PROOF OF THE RECTILINEAR ART GALLERY THEOREM
    MANNILA, H
    WOOD, D
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1985, 17 (02) : 141 - 149
  • [5] RECTILINEAR STEINER PROBLEM
    HWANG, FK
    JOURNAL OF DESIGN AUTOMATION & FAULT-TOLERANT COMPUTING, 1978, 2 (04): : 303 - 310
  • [6] A PROOF OF THE GILBERT-POLLAK CONJECTURE ON THE STEINER RATIO
    DU, DZ
    HWANG, FK
    ALGORITHMICA, 1992, 7 (2-3) : 121 - 135
  • [7] Efficient Rectilinear Steiner Tree construction with Rectilinear Blockages
    Shen, Z
    Chu, CCN
    Li, YM
    2005 IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN: VLSI IN COMPUTERS & PROCESSORS, PROCEEDINGS, 2005, : 38 - 44
  • [8] THE RECTILINEAR STEINER ARBORESCENCE PROBLEM
    RAO, SK
    SADAYAPPAN, P
    HWANG, FK
    SHOR, PW
    ALGORITHMICA, 1992, 7 (2-3) : 277 - 288
  • [9] RECTILINEAR STEINER TREES IN RECTANGLE TREES
    FARLEY, AM
    HEDETNIEMI, ST
    MITCHELL, SL
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1980, 1 (01): : 70 - 81
  • [10] Rectilinear full Steiner tree generation
    Zachariasen, M
    NETWORKS, 1999, 33 (02) : 125 - 143