DSBA PROTEIN;
PROTEIN DISULFIDE ISOMERASE (PDI);
HIRUDIN;
OXIDATIVE PROTEIN FOLDING;
DISULFIDE INTERCHANGE REACTIONS;
D O I:
10.1006/jmbi.1995.0119
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Protein disulfide isomerases (PDIs) catalyze disulfide bond formation during protein folding in vivo and are essential for viability in eukaryotic cells. They share the active-site sequence C-X-X-C that forms a catalytic disulfide. The recent finding that the EUG1 protein, a PDI-related yeast protein, with C-X-X-S sequence at its active sites can complement PDI-deficiency raised the general question of whether disulfide-isomerase activity is essential for cell viability or whether PDI variants with single active-site thiol groups can be catalytically active as disulfide isomerases. We investigated the function of the catalytic cysteine residues in DsbA, a PDI-related protein required for disulfide formation in the periplasmic space of Escherichia coli, by replacing C30 and C33 with alanine. While the mutant C30A and the double mutant CC30/33AA are inactive, C33A catalyzes disulfide-interchange reactions and oxidative renaturation of the reduced, unfolded thrombin inhibitor hirudin with close to wild-type efficiency Thus, the single active-site thiol group of C30 is sufficient for disulfide-isomerase activity of the DsbA protein.