One node fault tolerance for caterpillars and starlike trees

被引:6
|
作者
Harary, F [1 ]
Khurrum, M [1 ]
机构
[1] NEW MEXICO STATE UNIV,DEPT ELECT & COMP ENGN,LAS CRUCES,NM 88003
关键词
caterpillar; edge cost; fault tolerance; spare node; starlike tree;
D O I
10.1080/00207169508804394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a given tree T with n nodes, we say that a supergraph G tolerates T (having one faulty node) if for each node u of G the subgraph G-u contains T up to isomorphism. Then G tolerates T optimally if G has just one new node and no supergraph of T with n + 1 nodes having fewer edges than G tolerates T. The one-node fault tolerance edge cost of T is the number of new edges in G. We derive theorems which determine this cost exactly for two type of trees, namely, caterpillar and starlike trees.
引用
收藏
页码:135 / 143
页数:9
相关论文
共 50 条
  • [22] Fault trees for clusters tolerating failure or disconnectedness of a single node
    Schneeweiss, WG
    JOURNAL OF SYSTEMS ARCHITECTURE, 1999, 45 (11) : 887 - 895
  • [23] Embedding double starlike trees into hypercubes
    Choudum, S. A.
    Lavanya, S.
    Sunitha, V.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (01) : 1 - 5
  • [24] Trees, Paths, Stars, Caterpillars and Spiders
    Jiang, Minghui
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, (COCOA 2015), 2015, 9486 : 551 - 565
  • [25] SPANNING TREES WHOSE STEMS ARE CATERPILLARS
    Ha, Pham Hoang
    Hanh, Dang Dinh
    Nam, Le Dinh
    Nhan, Nguyen Huu
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2024, 61 (02) : 134 - 146
  • [26] Spectral radius ordering of starlike trees
    Oliveira, Elismar R.
    Stevanovic, Dragan
    Trevisan, Vilmar
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (05): : 991 - 1000
  • [27] THE STARLIKE TREES WHICH SPAN A HYPERCUBE
    HARARY, F
    LEWINTER, M
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 15 (04) : 299 - 302
  • [28] Graphs with only caterpillars as spanning trees
    Jamison, RE
    McMorris, FR
    Mulder, HM
    DISCRETE MATHEMATICS, 2003, 272 (01) : 81 - 95
  • [29] Starlike trees are determined by their Laplacian spectrum
    Omidi, G. R.
    Tajbakhsh, K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) : 654 - 658
  • [30] On the eigenvalues and spectral radius of starlike trees
    Oboudi, Mohammad Reza
    AEQUATIONES MATHEMATICAE, 2018, 92 (04) : 683 - 694