EULER FORMS IN KALUZA-KLEIN THEORIES

被引:1
|
作者
VASILIC, M
机构
[1] Department of Theoretical Physics, Institute of Nuclear Sciences, Beograd, 11001
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS | 1994年 / 109卷 / 10期
关键词
D O I
10.1007/BF02723231
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A 2k-dimensional Euler form dimensionally continued to n = 2k + 3 dimensions is analysed in the framework of a higher-dimensional theory. The dimensional reduction is performed by averaging the n-dimensional equations of motion over the internal coordinates. The effective 4-equations are shown to contain the standard Einstein-Yang-Mills term with vanishing cosmological constant, a massless scalar field and some additional fields of a non-standard type. It is argued that the internal symmetries of the type of the direct product of groups cannot be realized by choosing the internal space in the form of the group manifold. A relation between the gravitational and SO(d + 1) gauge coupling constants is obtained that slightly differs from the well-known Weinberg formula.
引用
收藏
页码:1083 / 1092
页数:10
相关论文
共 50 条
  • [31] STABILITY AND FERMIONS IN KALUZA-KLEIN THEORIES
    TSOKOS, K
    PHYSICS LETTERS B, 1983, 126 (06) : 451 - 454
  • [32] Multipole moments in Kaluza-Klein theories
    Czuchry, E
    Kopczynski, W
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (03) : 509 - 518
  • [33] FERMIONIC COUPLINGS IN KALUZA-KLEIN THEORIES
    FINKELSTEIN, R
    VILLASANTE, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (03) : 536 - 541
  • [34] Discrete symmetries in the Kaluza-Klein theories
    Borstnik, N. S. Mankoc
    Nielsen, H. B. F.
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04):
  • [35] Discrete symmetries in the Kaluza-Klein theories
    N.S. Mankoč Borštnik
    H.B.F. Nielsen
    Journal of High Energy Physics, 2014
  • [36] TOPOLOGICAL SOLITONS IN KALUZA-KLEIN THEORIES
    CARLIP, S
    PHYSICAL REVIEW D, 1986, 33 (06): : 1638 - 1642
  • [37] HIDDEN SYMMETRIES OF KALUZA-KLEIN THEORIES
    POPOV, AD
    THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 71 (01) : 385 - 392
  • [38] FUNCTIONAL MEASURE IN KALUZA-KLEIN THEORIES
    UNZ, RK
    PHYSICAL REVIEW D, 1985, 32 (10): : 2539 - 2549
  • [39] A new perspective on Kaluza-Klein theories
    Horoto, L.
    Scholtz, F. G.
    ANNALS OF PHYSICS, 2024, 469
  • [40] Geodesic deviation in Kaluza-Klein theories
    Kerner, R
    Martin, J
    Mignemi, S
    van Holten, JW
    PHYSICAL REVIEW D, 2001, 63 (02)