In Vivo Measurements of Tumor Metabolism and Growth after Administration of Enzastaurin Using Small Animal FDG Positron Emission Tomography

被引:6
|
作者
Pollok, Karen E. [1 ]
Lahn, Michael [2 ]
Enas, Nathan [3 ]
McNulty, Ann [4 ]
Graff, Jeremy [4 ]
Cai, Shanbao [1 ]
Hartwell, Jennifer R. [1 ]
Ernstberger, Aaron [1 ]
Thornton, Donald [2 ]
Brail, Les [2 ]
Hutchins, Gary [5 ]
机构
[1] Indiana Univ, Herman B Wells Ctr Pediat Res, Simon Canc Ctr, Sect Pediat Hematol & Oncol, Indianapolis, IN 46202 USA
[2] Lilly Res Labs, Therapeut Area Oncol, Indianapolis, IN 46285 USA
[3] Lilly Res Labs, Program Phase Stat, Indianapolis, IN 46285 USA
[4] Lilly Res Labs, Oncol Discovery, Indianapolis, IN 46285 USA
[5] Indiana Univ, Dept Radiol, Ctr Canc, Indianapolis, IN 46202 USA
关键词
D O I
10.1155/2009/596560
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. The use of 2-[F-18] fluoro-2-deoxy-D-glucose ([F-18] FDG) may help to establish the antitumor activity of enzastaurin, a novel protein kinase C-beta II (PKC-beta II) inhibitor, in mouse xenografts. Methods. The hematologic cell line RAJI and the solid tumor cell line U87MG were each implanted in NOD/ SCID mice. Standard tumor growth measurements and [F-18] FDG PET imaging were performed weekly for up to three weeks after tumor implantation and growth. Results. Concomitant with caliper measurements, [F-18] FDG PET imaging was performed to monitor glucose metabolism. Heterogeneity of glucose uptake in various areas of the tumors was observed after vehicle or enzastaurin treatment. This heterogeneity may limit the use of [F-18] FDG PET imaging to measure enzastaurin-associated changes in xenograft tumors. Conclusion. [F-18] FDG PET imaging technique does not correlate with standard caliper assessments in xenografts to assess the antitumor activity of enzastaurin. Future studies are needed to determine the use of [F-18] FDG PET imaging in preclinical models. Copyright (C) 2009 Karen E. Pollok et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A reactivity-based [18F]FDG probe for in vivo formaldehyde imaging using positron emission tomography
    Liu, Wei
    Truillet, Charles
    Flavell, Robert R.
    Brewer, Thomas F.
    Evans, Michael J.
    Wilson, David M.
    Chang, Christopher J.
    CHEMICAL SCIENCE, 2016, 7 (08) : 5503 - 5507
  • [42] Biomaterials in repairing rat femoral defects: In vivo insights from small animal positron emission tomography/computed tomography (PET/CT) studies
    Neuber, Christin
    Schulze, Sabine
    Foerster, Yvonne
    Hofheinz, Frank
    Wodke, Johanna
    Moeller, Stephanie
    Schnabelrauch, Matthias
    Hintze, Vera
    Scharnweber, Dieter
    Rammelt, Stefan
    Pietzsch, Jens
    CLINICAL HEMORHEOLOGY AND MICROCIRCULATION, 2019, 73 (01) : 177 - 194
  • [43] Effects of weight loss on [18F]FDG metabolism in skeletal muscle using positron emission tomography (PET)
    Williams, KV
    Price, JC
    McKolanis, T
    Kelley, DE
    DIABETES, 2002, 51 : A305 - A306
  • [44] Regional Differences in Cerebral Glucose Metabolism After Cardiac Arrest and Resuscitation in Rats Using [18F]FDG Positron Emission Tomography and Autoradiography
    Putzu, Alessandro
    Valtorta, Silvia
    Di Grigoli, Giuseppe
    Haenggi, Matthias
    Belloli, Sara
    Malgaroli, Antonio
    Gemma, Marco
    Landoni, Giovanni
    Beretta, Luigi
    Moresco, Rosa Maria
    NEUROCRITICAL CARE, 2018, 28 (03) : 370 - 378
  • [45] Regional Differences in Cerebral Glucose Metabolism After Cardiac Arrest and Resuscitation in Rats Using [18F]FDG Positron Emission Tomography and Autoradiography
    Alessandro Putzu
    Silvia Valtorta
    Giuseppe Di Grigoli
    Matthias Haenggi
    Sara Belloli
    Antonio Malgaroli
    Marco Gemma
    Giovanni Landoni
    Luigi Beretta
    Rosa Maria Moresco
    Neurocritical Care, 2018, 28 : 370 - 378
  • [46] Validation of concomitant renal blood flow and oxidative metabolism measurements by positron emission tomography using labelled acetate
    Lemoine, S.
    Janier, M.
    Fouque, D.
    Laville, M.
    Juillard, L.
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2008, 22 : 33 - 33
  • [47] Interrogating Tumor Metabolism and Tumor Microenvironments Using Molecular Positron Emission Tomography Imaging. Theranostic Approaches to Improve Therapeutics
    Jacobson, Orit
    Chen, Xiaoyuan
    PHARMACOLOGICAL REVIEWS, 2013, 65 (04) : 1214 - 1256
  • [48] In Vivo Imaging of Hypoxia and Neoangiogenesis in Experimental Syngeneic Hepatocellular Carcinoma Tumor Model Using Positron Emission Tomography
    Kis, Adrienn
    Szabo, Judit P.
    Denes, Noemi
    Vagner, Adrienn
    Nagy, Gabor
    Garai, Ildiko
    Fekete, Aniko
    Szikra, Dezso
    Hajdu, Istvan
    Matolay, Orsolya
    Mehes, Gabor
    Mezo, Gabor
    Kertesz, Istvan
    Trencsenyi, Gyorgy
    BIOMED RESEARCH INTERNATIONAL, 2020, 2020
  • [49] In vivo imaging of therapy response to a novel Pan- HER antibody mixture using FDG and FLT positron emission tomography
    Nielsen, Carsten H.
    Jensen, Mette M.
    Kristensen, Lotte K.
    Dahlman, Anna
    Froehlich, Camilla
    Jacobsen, Helle J.
    Poulsen, Thomas T.
    Lantto, Johan
    Horak, Ivan D.
    Kragh, Michael
    Kjaer, Andreas
    ONCOTARGET, 2015, 6 (35) : 37495 - 37508
  • [50] Spatiotemporal in vivo imaging of peptide receptors with high resolution in small animals using positron emission tomography (microPET)
    Johnstroem, P.
    Fryer, T. D.
    Richards, H. K.
    Barret, O.
    Clark, J. C.
    Pickard, J. D.
    Davenport, A. P.
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2004, 18 : 74 - 74