ETA-INFINITY-CONTROL WITH TIME-DOMAIN CONSTRAINTS - THE INFINITE-HORIZON CASE

被引:5
|
作者
ROTSTEIN, H [1 ]
SIDERIS, A [1 ]
机构
[1] UNIV CALIF IRVINE,DEPT MECH & AEROSP ENGN,IRVINE,CA 92717
基金
美国国家科学基金会;
关键词
DISCRETE-TIME ETA-INFINITY-OPTIMAL CONTROL; TIME-DOMAIN CONSTRAINTS; ROBUST CONTROL;
D O I
10.1016/0167-6911(94)00014-M
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It has been shown recently that time domain constraints can be incorporated into H(infinity)-optimal control problems when the constraints are enforced over a finite horizon, i.e. over a finite number of sample instants. This is done in (Sideris and Rotstein, 1993; Rotstein and Sideris, to appear) where the finite horizon problem is reduced into a finite dimensional, convex, but generically nondifferentiable optimization program. In this paper, the infinite horizon case is addressed. It is shown that when the horizon length goes to infinity, the solutions to the finite horizon problems converge to a solution of the infinite horizon problem. Moreover, a simple modification of the finite horizon problems guarantees convergence to a solution that is easily approximated by a finite dimensional transfer function.
引用
收藏
页码:251 / 258
页数:8
相关论文
共 50 条
  • [21] On an adjoint trajectory in infinite-horizon control problems
    Khlopin, D., V
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2024, 30 (03): : 274 - 292
  • [22] Needle Variations in Infinite-Horizon Optimal Control
    Aseev, S. M.
    Veliov, V. M.
    VARIATIONAL AND OPTIMAL CONTROL PROBLEMS ON UNBOUNDED DOMAIN, 2014, 619 : 1 - 17
  • [23] Infinite-horizon boundary control of distributed systems
    V. I. Maksimov
    Yu. S. Osipov
    Computational Mathematics and Mathematical Physics, 2016, 56 : 14 - 25
  • [24] H-infinity-controller synthesis with time-domain constraints
    Balakrishnan, V
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (08) : 1179 - 1186
  • [25] LMI approach to an h∞-control problem with time-domain constraints over a finite horizon
    Hosoe, S
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (08) : 1128 - 1132
  • [26] Necessary conditions for infinite-horizon Volterra optimal control problems with time delay
    De la Vega, Constanza
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2009, 26 (01) : 1 - 22
  • [27] Pseudospectral methods for infinite-horizon optimal control problems
    Fahroo, Fariba
    Ross, I. Michael
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2008, 31 (04) : 927 - 936
  • [28] The Value of Planning for Infinite-Horizon Model Predictive Control
    Hatch, Nathan
    Boots, Byron
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 7372 - 7378
  • [29] Infinite-horizon minimax control with pointwise cost functional
    Piccardi, C.
    Journal of Optimization Theory and Applications, 1993, 78 (02): : 317 - 336
  • [30] A framework for receding-horizon control in infinite-horizon aggregative games
    Fele, Filiberto
    De Paola, Antonio
    Angeli, David
    Strbac, Goran
    ANNUAL REVIEWS IN CONTROL, 2018, 45 : 191 - 204