GINZBURG-LANDAU VORTICES AND RENORMALIZED ENERGY

被引:0
|
作者
BETHUEL, F
BREZIS, H
HELEIN, F
机构
[1] UNIV PARIS 06, ANAL NUMER LAB, F-75252 PARIS 05, FRANCE
[2] ECOLE NORMALE SUPER, CMLA, F-94235 CACHAN, FRANCE
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behavior as epsilon --> 0 of the complex-valued solutions (u(epsilon)) of the Ginzburg-Landau equation -DELTAu(epsilon) = 1/epsilon2 u(epsilon)(1-\u(epsilon)\2) in OMEGA subset-of R2 with a Dirichlet boundary condition u(epsilon) = g on partial derivative OMEGA. We also describe the specific properties of minimizing solutions.
引用
收藏
页码:165 / 171
页数:7
相关论文
共 50 条