An iterative scheme for numerical solution of Volterra integral equations using collocation method and Chebyshev polynomials

被引:0
|
作者
Rashidinia, Jalil [1 ]
Najafi, Esmaeil [1 ,2 ]
Arzhang, Asghar [3 ]
机构
[1] Iran Univ Sci & Technol, Sch Math, Tehran 1684613114, Iran
[2] Urmia Univ, Dept Math, Orumiyeh, Iran
[3] Islamic Azad Univ, Dept Math, Karaj Branch, Karaj, Iran
关键词
Volterra integral equations; Quasilinear technique; Collocation method; Chebyshev polynomials;
D O I
10.1186/2251-7456-6-60
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When we discretize nonlinear Volterra integral equations using some numerical, such as collocation methods, the arising algebraic systems are nonlinear. Applying quasilinear technique to the nonlinear Volterra integral equations gives raise to linear Volterra integral equations. The solutions of these equations yield a functional sequence quadratically convergent to the solution. Then, we use collocation method based on Chebyshev polynomials and a modified Clenshaw-Curtis quadrature and obtain a numerical solution. Error analysis has been performed, and the method has been applied on three numerical examples.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] NUMERICAL SOLUTION OF FRACTIONAL VOLTERRA INTEGRAL EQUATIONS BASED ON RATIONAL CHEBYSHEV APPROXIMATION
    Deniz, S.
    Ozger, F.
    Ozger, Z. O.
    Mohiuddine, S. A.
    Ersoy, M. T.
    [J]. MISKOLC MATHEMATICAL NOTES, 2023, 24 (03) : 1287 - 1305
  • [32] Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method
    Morgado, Maria Luisa
    Rebelo, Magda
    Ferras, Luis L.
    Ford, Neville J.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2017, 114 : 108 - 123
  • [33] The numerical solution of nonlinear delay Volterra integral equations using the thin plate spline collocation method with error analysis
    Alireza Hosseinian
    Pouria Assari
    Mehdi Dehghan
    [J]. Computational and Applied Mathematics, 2023, 42
  • [34] The numerical solution of nonlinear delay Volterra integral equations using the thin plate spline collocation method with error analysis
    Hosseinian, Alireza
    Assari, Pouria
    Dehghan, Mehdi
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (02):
  • [35] Collocation method for Fredholm and Volterra integral equations
    Rashidinia, Jalil
    Mahmoodi, Zahra
    [J]. KYBERNETES, 2013, 42 (03) : 400 - 412
  • [36] NUMERICAL SOLUTION OF INTEGRAL EQUATION USING GALERKIN METHOD WITH HERMITE, CHEBYSHEV & ORTHOGONAL POLYNOMIALS
    Ahmad, Najmuddin
    Singh, Balmukund
    [J]. JOURNAL OF SCIENCE AND ARTS, 2020, (01): : 35 - 42
  • [37] A numerical technique for solving Volterra-Fredholm integral equations using Chebyshev spectral method
    Khidir, Ahmed A.
    [J]. RICERCHE DI MATEMATICA, 2024, 73 (03) : 1559 - 1577
  • [38] Numerical solution of linear integral equations by using Sinc-collocation method
    Rashidinia, J
    Zarebnia, M
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 168 (02) : 806 - 822
  • [39] Numerical solution of linear integral equations system using the Bernstein collocation method
    Jafarian, Ahmad
    Nia, Safa A. Measoomy
    Golmankhaneh, Alireza K.
    Baleanu, Dumitru
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [40] Iterative fuzzy Bernstein polynomials method for nonlinear fuzzy Volterra integral equations
    Ziari, Shokrollah
    Bica, Alexandru Mihai
    Ezzati, Reza
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):