SIMILARITY, IN MOLECULAR-STRUCTURE AND FUNCTION, BETWEEN THE PLANT TOXIN PUROTHIONIN AND THE MAMMALIAN PORE-FORMING PROTEINS

被引:0
|
作者
OKA, T
MURATA, Y
NAKANISHI, T
YOSHIZUMI, H
HAYASHIDA, H
OHTSUKI, Y
TOYOSHIMA, K
HAKURA, A
机构
[1] NATL INST GENET,DEPT GENET INFORMAT ANAL,MISHIMA,SHIZUOKA 411,JAPAN
[2] NARA MED UNIV,CTR CANC,DEPT ONCOL PATHOL,KASHIHARA,NARA,JAPAN
[3] SUNTORY INST BIOMED RES,OSAKA,JAPAN
[4] OSAKA UNIV,MICROBIAL DIS RES INST,OSAKA,JAPAN
[5] OSAKA UNIV,DEPT TUMOR VIROL,OSAKA,JAPAN
[6] OSAKA UNIV,DEPT ONCOGENE RES,OSAKA,JAPAN
关键词
PUROTHIONIN; PERFORIN; PORE-FORMING PROTEINS (PFP); CYSTEIN-RICH REPEAT MOTIF; PHYLOGENY;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many proteins containing domains of a cysteine-rich repeated motif, such as epidermal growth factor (EGF), have been reported. Here we report strong similarity between the amino acid sequence of a plant toxin-i.e., purothionin and its homologues- and with those of a domain found in mammalian pore-forming cytoplasmic proteins: components of complement and perforin of cytotoxic T-lymphocytes or natural killer-like cytotoxic cells. These similar sequences were found to be identical to the so-called EGF-like cysteine-rich repeated motif itself. Electron-microscopic observations indicated that, like complement and perforin, purothionin forms pores in the cytoplasmic membrane of target cells, resulting in their death within a few hours. On the basis of these sequence comparisons and physiological functions, we propose a scheme for the evolution of proteins containing modules' of the cysteine-rich repeat motif.
引用
收藏
页码:707 / 715
页数:9
相关论文
共 50 条
  • [41] A MOLECULAR BLUEPRINT FOR THE PORE-FORMING STRUCTURE OF VOLTAGE-GATED CALCIUM CHANNELS
    GROVE, A
    TOMICH, JM
    MONTAL, M
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (15) : 6418 - 6422
  • [42] Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels
    Neely, Alan
    Hidalgo, Patricia
    FRONTIERS IN PHYSIOLOGY, 2014, 5
  • [43] Proteolipidic assembly and function of the pore-forming toxin Tse5, an effector from the Pseudomonas aeruginosa
    Rojas-Palomino, Jessica
    Gonzalez-Magana, Amaia
    Queralt-Martin, Maria
    Albesa-Jove, David
    Alcaraz, Antonio
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 376A - 377A
  • [44] Structural-Function Mechanism of Vibrio cholerae Cytolysin: a b-barrel Pore-Forming Toxin
    Rai, Anand
    Chattopadhyay, Kausik
    FASEB JOURNAL, 2015, 29
  • [45] Structural Snapshots of the α-helical Pore-forming Toxin FraC Reveal The Molecular Basis Of Its Activation In Membranes
    Tanaka, Koji
    Caaveiro, Jose M.
    Tsumoto, Kouhei
    PROTEIN SCIENCE, 2014, 23 : 230 - 231
  • [46] The Solvent-Expoded C-Terminus of the Cytolysin A Pore-Forming Toxin Directs Pore Formation and Channel Function in Membranes
    Sathyanarayana, Pradeep
    Desikan, Rajat
    Ayappa, K. Ganapathy
    Visweswariah, Sandhya S.
    BIOCHEMISTRY, 2016, 55 (42) : 5952 - 5961
  • [47] The single GUV method for revealing the functions of antimicrobial, pore-forming toxin, and cell-penetrating peptides or proteins
    Islam, Md. Zahidul
    Alam, Jahangir Md.
    Tamba, Yukihiro
    Karal, Mohammad Abu Sayem
    Yamazaki, Masahito
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (30) : 15752 - 15767
  • [48] Rapid Topology Determination of Membrane Proteins: Pore-Forming Mechanism of Bt toxin Cry1Aa
    Groulx, Nicolas
    Juteau, Marc
    Schwartz, Jean-Louis
    Laprade, Raynald
    Blunck, Rikard
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 535A - 535A
  • [49] Crystal structure of Bacillus cereus HlyIIR, a transcriptional regulator of the gene for pore-forming toxin hemolysin II
    Kovalevskiy, Oleg V.
    Lebedev, Andrey A.
    Surin, Alexei K.
    Solonin, Alexander S.
    Antson, Alfred A.
    JOURNAL OF MOLECULAR BIOLOGY, 2007, 365 (03) : 825 - 834
  • [50] BASEMENT-MEMBRANE PROTEINS - MOLECULAR-STRUCTURE AND FUNCTION
    MARTIN, GR
    TIMPL, R
    KUHN, K
    ADVANCES IN PROTEIN CHEMISTRY, 1988, 39 : 1 - 50