MAXIMUM-LIKELIHOOD SOFT DECISION DECODING OF BCH CODES

被引:89
|
作者
VARDY, A
BEERY, Y
机构
[1] IBM CORP,DIV RES,ALMADEN RES CTR,SAN JOSE,CA 95120
[2] TEL AVIV UNIV,DEPT ELECT ENGN,IL-69978 TEL AVIV,ISRAEL
关键词
BCH CODES; MAXIMUM-LIKELIHOOD SOFT-DECISION DECODING; MINIMAL TRELLISES OF BLOCK CODES;
D O I
10.1109/18.312184
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of efficient maximum-likelihood soft decision decoding of binary BCH codes is considered. It is known that those primitive BCH codes whose designed distance is one less than a power of two, contain subcodes of high dimension which consist of a direct-sum of several identical codes. We show that the same kind of direct-sum structure exists in all the primitive BCH codes, as well as in the BCH codes of composite block length. We also introduce a related structure termed the ''concurring-sum'', and then establish its existence in the primitive binary BCH codes. Both structures are employed to upper bound the number of states in the minimal trellis of BCH codes, and develop efficient algorithms for maximum-likelihood soft decision decoding of these codes.
引用
收藏
页码:546 / 554
页数:9
相关论文
共 50 条
  • [11] Low complexity maximum-likelihood decoding of product codes
    Al-Askary, O
    [J]. 2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 87 - 87
  • [12] MAXIMUM-LIKELIHOOD DECODING OF ARRAY CODES WITH TRELLIS STRUCTURE
    HONARY, B
    KAYA, L
    MARKARIAN, GS
    DARNELL, M
    [J]. IEE PROCEEDINGS-I COMMUNICATIONS SPEECH AND VISION, 1993, 140 (05): : 340 - 345
  • [13] The Maximum-Likelihood Decoding Threshold for Cycle Codes of Graphs
    Nelson, Peter
    van Zwam, Stefan H. M.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (10) : 5316 - 5322
  • [14] Iterative maximum-likelihood trellis decoding for block codes
    Luna, AA
    Fontaine, FM
    Wicker, SB
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1999, 47 (03) : 338 - 342
  • [15] MAXIMUM-LIKELIHOOD ERASURE DECODING SCHEME FOR CONCATENATED CODES
    XU, YZ
    [J]. IEE PROCEEDINGS-I COMMUNICATIONS SPEECH AND VISION, 1992, 139 (03): : 336 - 339
  • [16] Efficient Maximum-Likelihood Decoding of Spherical Lattice Codes
    Su, Karen
    Berenguer, Inaki
    Wassell, Ian J.
    Wang, Xiaodong
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (08) : 2290 - 2300
  • [17] CONVOLUTIONAL CODES .2. MAXIMUM-LIKELIHOOD DECODING
    FORNEY, GD
    [J]. INFORMATION AND CONTROL, 1974, 25 (03): : 222 - 266
  • [18] MAXIMUM-LIKELIHOOD TRELLIS DECODING TECHNIQUE FOR BALANCED CODES
    MARKARIAN, G
    HONARY, B
    BLAUM, M
    [J]. ELECTRONICS LETTERS, 1995, 31 (06) : 447 - 448
  • [19] Performance Analysis of Maximum-Likelihood Decoding of Polar Codes
    Zheng, Xiangping
    Yao, Xinyuanmeng
    Ma, Xiao
    [J]. SPACE INFORMATION NETWORKS, SINC 2023, 2024, 2057 : 115 - 127
  • [20] A List-Decoding Approach to Low-Complexity Soft Maximum-Likelihood Decoding of Cyclic Codes
    Yang, Hengjie
    Liang, Ethan
    Yao, Hanwen
    Vardy, Alexander
    Divsalar, Dariush
    Wesel, Richard D.
    [J]. 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,