Efficiently Finding the Optimum Number of Clusters in a Dataset with a New Hybrid Cellular Evolutionary Algorithm

被引:3
|
作者
Arellano-Verdejo, Javier [1 ]
Guzman-Arenas, Adolfo [1 ]
Godoy-Calderon, Salvador [1 ]
Barron Fernandez, Ricardo [1 ]
机构
[1] Inst Politecn Nacl, Ctr Invest Comp, Mexico City, DF, Mexico
来源
COMPUTACION Y SISTEMAS | 2014年 / 18卷 / 02期
关键词
Clustering; cellular genetic algorithm; micro-evolutionary algorithms; particle swarm optimization; optimal number of clusters;
D O I
10.13053/CyS-18-2-2014-034
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A challenge in hybrid evolutionary algorithms is to employ efficient strategies to cover all the search space, applying local search only in actually promising search areas; on the other hand, clustering algorithms, a fundamental base for data mining procedures and learning techniques, suffer from the lack of efficient methods for determining the optimal number of clusters to be found in an arbitrary dataset. Some existing methods use evolutionary algorithms with cluster validation index as the objective function. In this article, a new cellular evolutionary algorithm based on a hybrid model of global and local heuristic search is proposed for the same task, and extensive experimentation is done with different datasets and indexes.
引用
收藏
页码:313 / 327
页数:15
相关论文
共 50 条
  • [1] Efficiently finding the optimum number of clusters in a dataset with a new hybrid differential evolution algorithm: DELA
    Arellano-Verdejo, Javier
    Alba, Enrique
    Godoy-Calderon, Salvador
    [J]. SOFT COMPUTING, 2016, 20 (03) : 895 - 905
  • [2] Efficiently finding the optimum number of clusters in a dataset with a new hybrid differential evolution algorithm: DELA
    Javier Arellano-Verdejo
    Enrique Alba
    Salvador Godoy-Calderon
    [J]. Soft Computing, 2016, 20 : 895 - 905
  • [3] Finding the number of clusters in a dataset using an information theoretic hierarchical algorithm
    Aghagolzadeh, M.
    Soltanian-Zadeh, H.
    Araabi, B. N.
    Aghagolzadeh, A.
    [J]. 2006 13TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-3, 2006, : 1336 - +
  • [4] A new evolutionary algorithm for determining the optimal number of clusters
    Lu, Wei
    Traore, Issa
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 1, PROCEEDINGS, 2006, : 648 - +
  • [5] Determining the optimal number of clusters using a new evolutionary algorithm
    Lu, W
    Traore, I
    [J]. ICTAI 2005: 17TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 712 - 713
  • [6] Finding the number of clusters in a dataset: An information-theoretic approach
    Sugar, CA
    James, GM
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (463) : 750 - 763
  • [7] NIFTI: An evolutionary approach for finding number of clusters in microarray data
    Sudhakar Jonnalagadda
    Rajagopalan Srinivasan
    [J]. BMC Bioinformatics, 10
  • [8] NIFTI: An evolutionary approach for finding number of clusters in microarray data
    Jonnalagadda, Sudhakar
    Srinivasan, Rajagopalan
    [J]. BMC BIOINFORMATICS, 2009, 10
  • [9] A Stage by Stage Pruning Algorithm for Detecting the Number of Clusters in a Dataset
    Zhu, Yanqiao
    Ma, Jinwen
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, 2010, 6215 : 222 - +
  • [10] A simple hybrid evolutionary algorithm for finding Golomb rulers
    Dotú, I
    Van Hentenryck, P
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 2018 - 2023