Determining the optimal number of clusters using a new evolutionary algorithm

被引:0
|
作者
Lu, W [1 ]
Traore, I [1 ]
机构
[1] Univ Victoria, Dept Elect & Comp Engn, Victoria, BC, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Estimating the optimal number of clusters for a dataset is one of the most essential issues in cluster analysis. An improper pre-selection for the number of clusters might easily lead to bad clustering outcome. In this paper, we propose a new evolutionary algorithm to address this issue. Specifically, the proposed evolutionary algorithm defines a new entropy-based fitness function, and three new genetic operators for splitting, merging, and removing clusters. Empirical evaluations using the synthetic dataset and an existing benchmark show that the proposed evolutionary algorithm can exactly estimate the optimal number of clusters for a set of data.
引用
收藏
页码:712 / 713
页数:2
相关论文
共 50 条
  • [1] A new evolutionary algorithm for determining the optimal number of clusters
    Lu, Wei
    Traore, Issa
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 1, PROCEEDINGS, 2006, : 648 - +
  • [2] Determining the Optimal Number of Clusters by an Extended RPCL Algorithm
    Li, Mn
    Mak, Man Wai
    Li, Chi Kwong
    [J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 1999, 3 (06): : 467 - 473
  • [3] An Improved Multi-SOM Algorithm for Determining the Optimal Number of Clusters
    Khanchouch, Imen
    Charrad, Malika
    Limam, Mohamed
    [J]. COMPUTER AND INFORMATION SCIENCE 2015, 2016, 614 : 189 - 201
  • [4] Fuzzy C-Means Algorithm Automatically Determining Optimal Number of Clusters
    Xing, Ruikang
    Li, Chenghai
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 60 (02): : 767 - 780
  • [5] A method for determining optimal number of clusters based on K-means algorithm
    Qin, Zhentao
    Yang, Wunian
    [J]. Qin, Z. (qzt2008@sina.com), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09): : 6123 - 6130
  • [6] Optimal Clustering Number Determining Algorithm by the New Clustering Method
    Zhu E.-Z.
    Sun Y.
    Zhang Y.-X.
    Gao X.
    Ma R.-H.
    Li X.-J.
    [J]. Ruan Jian Xue Bao/Journal of Software, 2021, 32 (10): : 3085 - 3103
  • [7] DETERMINING THE OPTIMAL NUMBER OF CLUSTERS IN CLUSTER ANALYSIS
    Loster, Tomas
    [J]. 10TH INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS, 2016, : 1078 - 1090
  • [8] Determining the optimal number of clusters by Enhanced Gap Statistic in K-mean algorithm
    Khan, Iliyas Karim
    Daud, Hanita Binti
    Zainuddin, Nooraini Binti
    Sokkalingam, Rajalingam
    Farooq, Muhammad
    Baig, Muzammil Elahi
    Ayub, Gohar
    Zafar, Mudasar
    [J]. EGYPTIAN INFORMATICS JOURNAL, 2024, 27
  • [9] A NEW APPROACH FOR DETERMINING NUMBER OF CLUSTERS
    Erisoglu, Murat
    Erisoglu, Ulku
    Servi, Tayfun
    Sakallioglu, Sadullah
    [J]. PAKISTAN JOURNAL OF STATISTICS, 2012, 28 (01): : 141 - 158
  • [10] A New Algorithm for Fuzzy Clustering Able to Find the Optimal Number of Clusters
    Abidi, Balkis
    Ben Yahia, Sadok
    Bouzeghoub, Amel
    [J]. 2012 IEEE 24TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2012), VOL 1, 2012, : 806 - 813