Investigation of the interaction of carbon dioxide fluid with internal and external single-wall carbon nanotubes by DFT

被引:2
|
作者
Oftadeh, M. [1 ]
Gholamalian, B. [1 ]
Hamadanian, M. [2 ]
机构
[1] Payame Noor Univ, Chem Dept, POB 19395-4697, Tehran, Iran
[2] Univ Kashan, Chem Dept, Kashan, Iran
关键词
Adsorption energy; Carbon nanotube; SWCN; DFT; Carbon dioxide fluid;
D O I
10.7508/jns.2011.03.005
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The effective parameters of (5, 0) and (5, 5) single-wall carbon nanotubes during the interaction with carbon dioxide as sensors are determined. The interaction of carbon dioxide molecules with internal and external walls of the nanotubes is studied using Gaussian 03 coding by density functional theory (DFT) at the B3LYP/6-311G level of theory. CO2 rotation around tube axles vertically and parallel to the internal and external walls has been investigated. The carbon dioxide molecule is predicted to bind only weakly to nanotubes, and the tube-molecule interactions can be identified as physisorption. CO2 adsorption is stronger on external wallsthan on internal walls, and adsorption on the external wall of (5, 0) is stronger than on the external wall of (5, 5); the adsorption energies are exothermic and equal to -0.8884 and -0.0528 kcal/mol, respectively. The rotation energy barrier for (5, 5) is lower than that for (5, 0) in all rotations, therefore in these interactions (5, 5) is more active. The energy gap significantly changes in the presence of carbon dioxide molecules on the inside surface of (5, 0) and the electric conductivity is affected, but no remarkable change is observed in the electronic structure of (5, 5).
引用
收藏
页码:213 / 223
页数:11
相关论文
共 50 条
  • [21] Ultralong single-wall carbon nanotubes
    L. X. Zheng
    M. J. O'Connell
    S. K. Doorn
    X. Z. Liao
    Y. H. Zhao
    E. A. Akhadov
    M. A. Hoffbauer
    B. J. Roop
    Q. X. Jia
    R. C. Dye
    D. E. Peterson
    S. M. Huang
    J. Liu
    Y. T. Zhu
    [J]. Nature Materials, 2004, 3 : 673 - 676
  • [22] Filling single-wall carbon nanotubes
    Monthioux, M
    [J]. CARBON, 2002, 40 (10) : 1809 - 1823
  • [23] Electroconductance in single-wall carbon nanotubes
    Jaiswal, Manu
    Sangeeth, C. S. Suchand
    Menon, Reghu
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (03)
  • [24] Properties of single-wall carbon nanotubes
    Yu, HY
    Jhang, SH
    Park, YW
    Bittar, A
    Trodahl, HJ
    Kaiser, AB
    [J]. SYNTHETIC METALS, 2001, 121 (1-3) : 1223 - 1224
  • [25] Theoretical investigation of small diameter single-wall carbon nanotubes
    Kürti, J
    Zólyomi, V
    [J]. MOLECULAR NANOSTRUCTURES, 2003, 685 : 456 - 459
  • [26] Electrochemical investigation of NO at single-wall carbon nanotubes modified electrodes
    Tingliang Xia
    Hongmei Bi
    Keying Shi
    [J]. Journal of Chemical Sciences, 2010, 122 : 401 - 408
  • [27] Carbon and metals: a path to single-wall carbon nanotubes
    Bethune, DS
    [J]. PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) : 90 - 96
  • [28] Biodistribution of carbon single-wall carbon nanotubes in mice
    Wang, HF
    Wang, J
    Deng, XY
    Sun, HF
    Shi, ZJ
    Gu, ZN
    Liu, YF
    Zhao, YL
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2004, 4 (08) : 1019 - 1024
  • [29] Adsorption and diffusion of sulfur dioxide and nitrogen in single-wall carbon nanotubes
    Hu, Zhiming
    Xie, Hui
    Wang, Qin
    Chen, Shiyong
    [J]. JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2019, 88 : 62 - 70
  • [30] Interaction study on DNA, single-wall carbon nanotubes and acridine orange
    Meng, Yang
    Liu, Fengyu
    Han, Jingfeng
    Sun, Shiguo
    Fan, Jiangli
    Song, Fengling
    Peng, Xiaojun
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2012, 177 (11): : 887 - 891